Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 112(36): E4995-5004, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305964

RESUMO

The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.


Assuntos
Proteína Semelhante a ELAV 4/metabolismo , Retroalimentação Fisiológica , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Neurogênese , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/genética , Western Blotting , Diferenciação Celular , Células Cultivadas , Proteína Semelhante a ELAV 4/genética , Ventrículos Laterais/citologia , Ventrículos Laterais/metabolismo , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Dados de Sequência Molecular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Ligação Proteica , Interferência de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Stem Cells ; 33(5): 1618-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25639236

RESUMO

In both the embryonic and adult brain, a critical step in neurogenesis is neuronal maturation. Deficiency of MeCP2 leads to Rett syndrome, a severe neurodevelopmental disorder. We have previously shown that MeCP2 plays critical roles in the maturation step of new neurons during neurogenesis. MeCP2 is known to regulate the expression of brain-derived neurotrophic factor (BDNF), a potent neurotrophic factor for neuronal maturation. Nevertheless, how MeCP2 regulates BDNF expression and how MeCP2 deficiency leads to reduced BDNF expression remain unclear. Here, we show that MeCP2 regulates the expression of a microRNA, miR-15a. We find that miR-15a plays a significant role in the regulation of neuronal maturation. Overexpression of miR-15a inhibits dendritic morphogenesis in immature neurons. Conversely, a reduction in miR-15a has the opposite effect. We further show that miR-15a regulates expression levels of BDNF, and exogenous BDNF could partially rescue the neuronal maturation deficits resulting from miR-15a overexpression. Finally, inhibition of miR-15a could rescue neuronal maturation deficits in MeCP2-deficient adult-born new neurons. These results demonstrate a novel role for miR-15a in neuronal development and provide a missing link in the regulation of BDNF by MeCP2.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Dendritos/metabolismo , Proteína 2 de Ligação a Metil-CpG/deficiência , MicroRNAs/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Hipocampo/patologia , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Mutação/genética
4.
Cell Rep ; 11(10): 1651-66, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26051932

RESUMO

Fragile X mental retardation protein (FMRP) and its autosomal paralog FXR2P are selective neuronal RNA-binding proteins, and mice that lack either protein exhibit cognitive deficits. Although double-mutant mice display more severe learning deficits than single mutants, the molecular mechanism behind this remains unknown. In the present study, we discovered that FXR2P (also known as FXR2) is important for neuronal dendritic development. FMRP and FXR2P additively promote the maturation of new neurons by regulating a common target, the AMPA receptor GluA1, but they do so via distinct mechanisms: FXR2P binds and stabilizes GluA1 mRNA and enhances subsequent protein expression, whereas FMRP promotes GluA1 membrane delivery. Our findings unveil important roles for FXR2P and GluA1 in neuronal development, uncover a regulatory mechanism of GluA1, and reveal a functional convergence between fragile X proteins in neuronal development.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de AMPA/biossíntese , Animais , Proteína do X Frágil da Deficiência Intelectual/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Receptores de AMPA/genética
5.
PLoS One ; 8(1): e51436, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23349673

RESUMO

BACKGROUND: Epigenetic mechanisms, including DNA methylation, histone modification, and microRNAs, play pivotal roles in stem cell biology. Methyl-CpG binding protein 1 (MBD1), an important epigenetic regulator of adult neurogenesis, controls the proliferation and differentiation of adult neural stem/progenitor cells (aNSCs). We recently demonstrated that MBD1 deficiency in aNSCs leads to altered expression of several noncoding microRNAs (miRNAs). METHODOLOGY/PRINCIPAL FINDINGS: Here we show that one of these miRNAs, miR-195, and MBD1 form a negative feedback loop. While MBD1 directly represses the expression of miR-195 in aNSCs, high levels of miR-195 in turn repress the expression of MBD1. Both gain-of-function and loss-of-function investigations show that alterations of the MBD1-miR-195 feedback loop tip the balance between aNSC proliferation and differentiation. CONCLUSIONS/SIGNIFICANCE: Therefore the regulatory loop formed by MBD1 and miR-195 is an important component of the epigenetic network that controls aNSC fate.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Retroalimentação Fisiológica , MicroRNAs/genética , Células-Tronco Neurais/citologia , Regiões 3' não Traduzidas/genética , Animais , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Giro Denteado/citologia , Regulação da Expressão Gênica/genética , Técnicas de Inativação de Genes , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA