Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(22): 25534-25544, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608361

RESUMO

We present a novel anode interface modification on the ß″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbOx (0 ≤ x ≤ 2) nanoparticles between 10 and 50 nm. Extensive performance analysis, through impedance spectroscopy and symmetric cycling, shows a stable, low-resistance interface for close to 6000 cycles. Furthermore, an intermediate temperature Na-S cell with a modified ß″-alumina solid-state electrolyte could achieve an average stable cycling capacity as high as 509 mA h/g. This modification drastically decreases the amount of Pb content to approximately 3% in the anode interface (6 wt % or 0.4 mol %) and could further eliminate the need for toxic Pb altogether by replacing it with environmentally benign Sn. Overall, in situ reduction of oxide nanoparticles created a high-performance anode interface, further enabling large-scale applications of liquid metal anodes with solid-state electrolytes.

2.
Chem Commun (Camb) ; 57(1): 45-48, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33325930

RESUMO

Reducing the operating temperature of conventional molten sodium-sulfur batteries (∼350 °C) is critical to create safe and cost-effective large-scale storage devices. By raising the surface treatment temperature of lead acetate trihydrate, the sodium wettability on ß''-Al2O3 improved significantly at 120 °C. The low temperature Na-S cell can reach a capacity as high as 520.2 mA h g-1 and stable cycling over 1000 cycles.

3.
ChemSusChem ; 9(24): 3382-3386, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27933751

RESUMO

A simple, inexpensive catalyst system (Amberlyst 15 and Ni/SiO2 -Al2 O3 ) is described for the upgrading of acetone to a range of chemicals and potential fuels. Stepwise hydrodeoxygenation of the produced ketones can yield branched alcohols, alkenes, and alkanes. An analysis of these products is provided, which demonstrates that this approach can provide a product profile of valuable bioproducts and potential biofuels.


Assuntos
Acetona/química , Carbono/química , Gasolina , 2-Propanol/química , Técnicas de Química Sintética , Hidrogenação
4.
Dalton Trans ; 44(30): 13490-7, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25970023

RESUMO

Metal-organic frameworks (MOFs) have proved to be very attractive for applications including gas storage, separation, sensing and catalysis. In particular, CO(2) separation from flue gas in post-combustion processes is one of the main focuses of research among the scientific community. One of the major issues that are preventing the successful commercialization of these novel materials is their high affinity towards water that not only compromises gas sorption capacity but also the chemical stability. In this paper, we demonstrate a novel post-synthesis modification approach to modify MOFs towards increasing hydrophobic behaviour and chemical stability against moisture without compromising CO(2) sorption capacity. Our approach consists of incorporating hydrophobic moieties on the external surface of the MOFs via physical adsorption. The rationale behind this concept is to increase the surface hydrophobicity in the porous materials without the need of introducing bulky functionalities inside the pore which compromises the sorption capacity toward other gases. We herein report preliminary results on routinely studied MOF materials [MIL-101(Cr) and NiDOBDC] demonstrating that the polymer-modified MOFs retain CO(2) sorption capacity while reducing the water adsorption up to three times, with respect to the un-modified materials, via an equilibrium effect. Furthermore, the water stability of the polymer-functionalized MOFs is significantly higher than the water stability of the bare material. Molecular dynamic simulations demonstrated that this equilibrium effect implies a fundamental and permanent change in the water sorption capacity of MOFs. This approach can also be employed to render moisture stability and selectivity to MOFs that find applications in gas separations, catalysis and sensing where water plays a critical role in compromising MOF performance and recyclability.

5.
Org Lett ; 12(23): 5534-7, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21053914

RESUMO

We studied the influence of a pyridine moiety versus a phenyl moiety when introduced in the molecular design of an ambipolar host. These pyridine-based host materials for organic light-emitting diodes (OLEDs) were synthesized in three to five steps from commercially available starting materials. The isomeric hosts have similar HOMO/LUMO energies; however, data from OLEDs fabricated using the above host materials demonstrate that small structural modification of the host results in significant changes in its carrier-transporting characteristics.

6.
Nano Lett ; 6(9): 1880-6, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16967995

RESUMO

We have carried out comparative studies on transparent conductive thin films made with two kinds of commercial carbon nanotubes: HiPCO and arc-discharge nanotubes. These films have been further exploited as hole-injection electrodes for organic light-emitting diodes (OLEDs) on both rigid glass and flexible substrates. Our experiments reveal that films based on arc-discharge nanotubes are overwhelmingly better than HiPCO-nanotube-based films in all of the critical aspects, including surface roughness, sheet resistance, and transparency. Further improvement in arc-discharge nanotube films has been achieved by using PEDOT passivation for better surface smoothness and using SOCl2 doping for lower sheet resistance. The optimized films show a typical sheet resistance of approximately 160 Omega/ square at 87% transparency and have been used successfully to make OLEDs with high stabilities and long lifetimes.


Assuntos
Eletroquímica/instrumentação , Iluminação/instrumentação , Nanotecnologia/instrumentação , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Semicondutores , Elasticidade , Condutividade Elétrica , Eletroquímica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Iluminação/métodos , Teste de Materiais , Membranas Artificiais , Nanotecnologia/métodos , Compostos Orgânicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA