Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542177

RESUMO

Mental disorders account for one of the most prevalent categories of the burden of disease worldwide, with depression expected to be the largest contributor by 2030, closely followed by anxiety. The COVID-19 pandemic possibly exacerbated these challenges, especially amongst adolescents, who experienced isolation, disrupted routines, and limited healthcare access. Notably, the pandemic has been associated with long-term neurological effects known as "long-COVID", characterized by both cognitive and psychopathological symptoms. In general, psychiatric disorders, including those related to long-COVID, are supposed to be due to widespread inflammation leading to neuroinflammation. Recently, the endocannabinoid system (ECS) emerged as a potential target for addressing depression and anxiety pathophysiology. Specifically, natural or synthetic cannabinoids, able to selectively interact with cannabinoid type-2 receptor (CB2R), recently revealed new therapeutic potential in neuropsychiatric disorders with limited or absent psychotropic activity. Among the most promising natural CB2R ligands, the bicyclic sesquiterpene ß-caryophyllene (BCP) has emerged as an excellent anti-inflammatory and antioxidant therapeutic agent. This review underscores BCP's immunomodulatory and anti-inflammatory properties, highlighting its therapeutic potential for the management of depression and anxiety.


Assuntos
Agonistas de Receptores de Canabinoides , Disfunção Cognitiva , Sesquiterpenos Policíclicos , Humanos , Adolescente , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/uso terapêutico , Pandemias , Síndrome de COVID-19 Pós-Aguda , Receptores de Canabinoides , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Receptor CB2 de Canabinoide
2.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37511328

RESUMO

Microglial dysfunction is one of the hallmarks and leading causes of common neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD). All these pathologies are characterized by aberrant aggregation of disease-causing proteins in the brain, which can directly activate microglia, trigger microglia-mediated neuroinflammation, and increase oxidative stress. Inhibition of glial activation may represent a therapeutic target to alleviate neurodegeneration. Recently, 3-iodothyronamine (T1AM), an endogenous derivative of thyroid hormone (TH) able to interact directly with a specific GPCR known as trace amine-associated receptor 1 (TAAR1), gained interest for its ability to promote neuroprotection in several models. Nevertheless, T1AM's effects on microglial disfunction remain still elusive. In the present work we investigated whether T1AM could inhibit the inflammatory response of human HMC3 microglial cells to LPS/TNFα or ß-amyloid peptide 25-35 (Aß25-35) stimuli. The results of ELISA and qPCR assays revealed that T1AM was able to reduce microglia-mediated inflammatory response by inhibiting the release of proinflammatory factors, including IL-6, TNFα, NF-kB, MCP1, and MIP1, while promoting the release of anti-inflammatory mediators, such as IL-10. Notably, T1AM anti-inflammatory action in HMC3 cells turned out to be a TAAR1-mediated response, further increasing the relevance of the T1AM/TAAR1 system in the management of NDDs.


Assuntos
Microglia , Doenças Neurodegenerativas , Humanos , Anti-Inflamatórios/farmacologia , Linhagem Celular , Inflamação , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768458

RESUMO

Very recently, we have developed a new generation of ligands targeting the cannabinoid receptor type 2 (CB2R), namely JR compounds, which combine the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both synthesized in our laboratories. The functional examination enabled us to identify JR14a, JR22a, and JR64a as the most promising compounds of the series. In the current study, we focused on the assessment of the bitopic (dualsteric) nature of these three compounds. Experiments in cAMP assays highlighted that only JR22a behaves as a CB2R bitopic (dualsteric) ligand. In parallel, computational studies helped us to clarify the binding mode of these three compounds at CB2R, confirming the bitopic (dualsteric) nature of JR22a. Finally, the potential of JR22a to prevent neuroinflammation was investigated on a human microglial cell inflammatory model.


Assuntos
Sítio Alostérico , Humanos , Ligantes , Receptores de Canabinoides , Regulação Alostérica
4.
Mar Drugs ; 20(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35877720

RESUMO

The natural environment represents an important source of drugs that originates from the terrestrial and, in minority, marine organisms. Indeed, the marine environment represents a largely untapped source in the process of drug discovery. Among all marine organisms, sponges with algae represent the richest source of compounds showing anticancer activity. In this study, the two secondary metabolites pelorol (PEL) and 5-epi-ilimaquinone (EPI), purified from Dactylospongia elegans were investigated for their anti-melanoma activity. PEL and EPI induced cell growth repression of 501Mel melanoma cells in a concentration- and time-dependent manner. A cell cycle block in the G1 phase by PEL and EPI was also observed. Furthermore, PEL and EPI induced significant accumulation of DNA histone fragments in the cytoplasmic fraction, indicating a pro-apoptotic effect of both compounds. At the molecular level, PEL and EPI induced apoptosis through the increase in pro-apoptotic BAX expression, confirmed by the decrease in its silencing miR-214-3p and the decrease in the anti-apoptotic BCL-2, MCL1, and BIRC-5 mRNA expression, attested by the increase in their silencing miRNAs, i.e., miR-193a-3p and miR-16-5p. In conclusion, our data indicate that PEL and EPI exert cytotoxicity activity against 501Mel melanoma cells promoting apoptotic signaling and inducing changes in miRNA expression and their downstream effectors. For these reasons could represent promising lead compounds in the anti-melanoma drug research.


Assuntos
Melanoma , MicroRNAs , Poríferos , Animais , Apoptose , Organismos Aquáticos/metabolismo , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Poríferos/metabolismo , Quinonas , Sesquiterpenos
5.
Mar Drugs ; 20(11)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36355005

RESUMO

Euplotin C is a sesquiterpene of marine origin endowed with significant anti-microbial and anti-tumor properties. Despite the promising functional profile, its progress as a novel drug candidate has failed so far, due to its scarce solubility and poor stability in aqueous media, such as biological fluids. Therefore, overcoming these limits is an intriguing challenge for the scientific community. In this work, we synthesized ß-cyclodextrin-based nanosponges and investigated their use as colloidal carriers for stably complex euplotin C. Results obtained proved the ability of the carrier to include the natural compound, showing remarkable values of both loading efficiency and capacity. Moreover, it also allowed us to preserve the chemical structure of the loaded compound, which was recovered unaltered once extracted from the complex. Therefore, the use of ß-cyclodextrin-based nanosponges represents a viable option to vehiculate euplotin C, thus opening up its possible use as pharmacologically active compound.


Assuntos
Ciclodextrinas , Sesquiterpenos , beta-Ciclodextrinas , Ciclodextrinas/farmacologia , Ciclodextrinas/química , beta-Ciclodextrinas/química , Sesquiterpenos/farmacologia , Solubilidade
6.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830256

RESUMO

Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Reabsorção Óssea/metabolismo , Endocanabinoides/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Remodelação Óssea/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Metástase Neoplásica , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Transdução de Sinais
7.
Molecules ; 26(6)2021 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-33799468

RESUMO

Recent reports highlighted the significant neuroprotective effects of thyronamines (TAMs), a class of endogenous thyroid hormone derivatives. In particular, 3-iodothyronamine (T1AM) has been shown to play a pleiotropic role in neurodegeneration by modulating energy metabolism and neurological functions in mice. However, the pharmacological response to T1AM might be influenced by tissue metabolism, which is known to convert T1AM into its catabolite 3-iodothyroacetic acid (TA1). Currently, several research groups are investigating the pharmacological effects of T1AM systemic administration in the search of novel therapeutic approaches for the treatment of interlinked pathologies, such as metabolic and neurodegenerative diseases (NDDs). A critical aspect in the development of new drugs for NDDs is to know their distribution in the brain, which is fundamentally related to their ability to cross the blood-brain barrier (BBB). To this end, in the present study we used the immortalized mouse brain endothelial cell line bEnd.3 to develop an in vitro model of BBB and evaluate T1AM and TA1 permeability. Both drugs, administered at 1 µM dose, were assayed by high-performance liquid chromatography coupled to mass spectrometry. Our results indicate that T1AM is able to efficiently cross the BBB, whereas TA1 is almost completely devoid of this property.


Assuntos
Encéfalo/metabolismo , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura/métodos , Células Endoteliais/metabolismo , Humanos , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/metabolismo , Permeabilidade/efeitos dos fármacos , Tironinas/metabolismo
8.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867069

RESUMO

BACKGROUND: Remarkable deregulation of several microRNAs (miRNAs) is demonstrated in cutaneous melanoma. hsa-miR-193a-3p is reported to be under-expressed in tissues and in plasma of melanoma patients, but the role of both miR-193a arms in melanoma is not known yet. METHODS: After observing the reduced levels of miR-193a arms in plasma exosomes of melanoma patients, the effects of hsa-miR-193a-3p and -5p transfection in cutaneous melanoma cell lines are investigated. RESULTS: In melanoma cell lines A375, 501Mel, and MeWo, the ectopic over-expression of miR-193a arms significantly reduced cell viability as well as the expression of genes involved in proliferation (ERBB2, KRAS, PIK3R3, and MTOR) and apoptosis (MCL1 and NUSAP1). These functional features were accompanied by a significant downregulation of Akt and Erk pathways and a strong increase in the apoptotic process. Since in silico databases revealed TROY, an orphan member of the tumor necrosis receptor family, as a potential direct target of miR-193a-5p, this possibility was investigated using the luciferase assay and excluded by our results. CONCLUSIONS: Our results underline a relevant role of miR-193a, both -3p and -5p, as tumor suppressors clarifying the intracellular mechanisms involved and suggesting that their ectopic over-expression could represent a novel treatment for cutaneous melanoma patients.


Assuntos
Regulação para Baixo , Melanoma/genética , MicroRNAs/genética , Neoplasias Cutâneas/genética , Regiões 3' não Traduzidas , Estudos de Casos e Controles , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Melanoma/sangue , Pessoa de Meia-Idade , Transdução de Sinais , Neoplasias Cutâneas/sangue , Melanoma Maligno Cutâneo
9.
Molecules ; 24(9)2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075867

RESUMO

In this work, hybrid compounds 1-4 obtained by conjugation of the non-steroidal anti-inflammatory drug diclofenac, with natural molecules endowed with antioxidant and antiproliferative activity were prepared. The antiproliferative activity of these hybrids was evaluated on immortalized human keratinocyte (HaCaT) cells stimulated with epidermal growth factor (EGF), an actinic keratosis (AK) model, and on human squamous cell carcinoma (SCC) cells (A431). Hybrid 1 presented the best activity in both cell models. Self-assembling surfactant nanomicelles have been chosen as the carrier to drive the hybrid 1 into the skin; the in vitro permeation through and penetration into pig ear skin have been evaluated. Among the nanostructured formulations tested, Nano3Hybrid20 showed a higher tendency of the hybrid 1 to be retained in the skin rather than permeating it, with a desirable topical and non-systemic action. On these bases, hybrid 1 may represent an attractive lead scaffold for the development of new treatments for AK and SCC.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Diclofenaco/uso terapêutico , Ceratose Actínica/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diclofenaco/síntese química , Diclofenaco/química , Diclofenaco/farmacologia , Humanos , Concentração Inibidora 50 , Ceratose Actínica/patologia , Micelas , Nanopartículas/química , Tamanho da Partícula , Neoplasias Cutâneas/patologia , Suínos
10.
Mar Drugs ; 16(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772645

RESUMO

Cutaneous melanoma is the most serious type of skin cancer, so new cytotoxic weapons against novel targets in melanoma are of great interest. Euplotin C (EC), a cytotoxic secondary metabolite of the marine ciliate Euplotes crassus, was evaluated in the present study on human cutaneous melanoma cells to explore its anti-melanoma activity and to gain more insight into its mechanism of action. EC exerted a marked cytotoxic effect against three different human melanoma cell lines (A375, 501Mel and MeWo) with a potency about 30-fold higher than that observed in non-cancer cells (HDFa cells). A pro-apoptotic activity and a decrease in melanoma cell migration by EC were also observed. At the molecular level, the inhibition of the Erk and Akt pathways, which control many aspects of melanoma aggressiveness, was shown. EC cytotoxicity was antagonized by dantrolene, a ryanodine receptor (RyR) antagonist, in a concentration-dependent manner. A role of RyR as a direct target of EC was also suggested by molecular modelling studies. In conclusion, our data provide the first evidence of the anti-melanoma activity of EC, suggesting it may be a promising new scaffold for the development of selective activators of RyR to be used for the treatment of melanoma and other cancer types.


Assuntos
Organismos Aquáticos/metabolismo , Euplotes/metabolismo , Melanoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Agonistas dos Canais de Cálcio/isolamento & purificação , Agonistas dos Canais de Cálcio/farmacologia , Agonistas dos Canais de Cálcio/uso terapêutico , Linhagem Celular Tumoral , Dantroleno/farmacologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Oncogênica v-akt/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/uso terapêutico
11.
Tumour Biol ; 39(5): 1010428317701646, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28466785

RESUMO

Melanoma is a devastating disease with few therapeutic options in the advanced stage and with the urgent need of reliable biomarkers for early detection. In this context, circulating microRNAs are raising great interest as diagnostic biomarkers. We analyzed the expression profiles of 21 selected microRNAs in plasma samples from melanoma patients and healthy donors to identify potential diagnostic biomarkers. Data analysis was performed using global mean normalization and NormFinder algorithm. Linear regression followed by receiver operating characteristic analyses was carried out to evaluate whether selected plasma miRNAs were able to discriminate between cases and controls. We found five microRNAs that were differently expressed among cases and controls after Bonferroni correction for multiple testing. Specifically, miR-15b-5p, miR-149-3p, and miR-150-5p were up-regulated in plasma of melanoma patients compared with healthy controls, while miR-193a-3p and miR-524-5p were down-regulated. Receiver operating characteristic analyses of these selected microRNAs provided area under the receiver operating characteristic curve values ranging from 0.80 to 0.95. Diagnostic value of microRNAs is improved when considering the combination of miR-149-3p, miR-150-5p, and miR-193a-3p. The triple classifier had a high capacity to discriminate between melanoma patients and healthy controls, making it suitable to be used in early melanoma diagnosis.


Assuntos
Biomarcadores Tumorais/sangue , Melanoma/sangue , MicroRNAs/sangue , Neoplasias Cutâneas/sangue , Idoso , Feminino , Regulação Neoplásica da Expressão Gênica , Voluntários Saudáveis , Humanos , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
12.
Nutr Cancer ; 68(5): 873-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27266366

RESUMO

Oleocanthal is one of the phenolic compounds of extra virgin olive oil with important anti-inflammatory properties. Although its potential anticancer activity has been reported, only limited evidence has been provided in cutaneous malignant melanoma. The present study is aimed at investigating the selective in vitro antiproliferative activity of oleocanthal against human malignant melanoma cells. Since oleocanthal is not commercially available, it was obtained as a pure standard by direct extraction and purification from extra virgin olive oil. Cell viability experiments carried out by WST-1 assay demonstrated that oleocanthal had a remarkable and selective activity for human melanoma cells versus normal dermal fibroblasts with IC50s in the low micromolar range of concentrations. Such an effect was paralleled by a significant inhibition of ERK1/2 and AKT phosphorylation and downregulation of Bcl-2 expression. These findings may suggest that extra virgin olive oil phenolic extract enriched in oleocanthal deserves further investigation in skin cancer.


Assuntos
Aldeídos/farmacologia , Azeite de Oliva/química , Fenóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Monoterpenos Ciclopentânicos , Regulação para Baixo , Humanos , Concentração Inibidora 50 , Sistema de Sinalização das MAP Quinases , Melanoma/tratamento farmacológico , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Melanoma Maligno Cutâneo
14.
Cells ; 13(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38786097

RESUMO

Neurodegenerative diseases (NDDs) are progressive multifactorial disorders of the nervous system sharing common pathogenic features, including intracellular misfolded protein aggregation, mitochondrial deficit, and inflammation. Taking into consideration the multifaceted nature of NDDs, development of multitarget-directed ligands (MTDLs) has evolved as an attractive therapeutic strategy. Compounds that target the cannabinoid receptor type II (CB2R) are rapidly emerging as novel effective MTDLs against common NDDs, such as Alzheimer's disease (AD). We recently developed the first CB2R bitopic/dualsteric ligand, namely FD22a, which revealed the ability to induce neuroprotection with fewer side effects. To explore the potential of FD22a as a multitarget drug for the treatment of NDDs, we investigated here its ability to prevent the toxic effect of ß-amyloid (Aß25-35 peptide) on human cellular models of neurodegeneration, such as microglia (HMC3) and glioblastoma (U87-MG) cell lines. Our results displayed that FD22a efficiently prevented Aß25-35 cytotoxic and proinflammatory effects in both cell lines and counteracted ß-amyloid-induced depression of autophagy in U87-MG cells. Notably, a quantitative proteomic analysis of U87-MG cells revealed that FD22a was able to potently stimulate the autophagy-lysosomal pathway (ALP) by activating its master transcriptional regulator TFEB, ultimately increasing the potential of this novel CB2R bitopic/dualsteric ligand as a multitarget drug for the treatment of NDDs.


Assuntos
Peptídeos beta-Amiloides , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Proteômica , Receptor CB2 de Canabinoide , Humanos , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Proteômica/métodos , Receptor CB2 de Canabinoide/metabolismo , Ligantes , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Autofagia/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Linhagem Celular Tumoral
15.
J Pers Med ; 14(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38392648

RESUMO

BACKGROUND: Hypoparathyroidism (HypoPT) is characterized by hypocalcemia and undetectable/inappropriately low PTH. Post-surgical HypoPT (PS-HypoPT) is the most common cause. Patients with PS-HypoPT present neuropsychological symptoms, probably due to the PTH deprivation in the central nervous system (CNS). However, these mechanisms are still not elucidated. The aim of this study was to evaluate the effects of PTH deprivation on CNS in an animal model of PS-HypoPT via a cognitive/behavioral assessment approach. METHODS: A surgical rat model of PS-HypoPT was obtained and treated with calcium to maintain normocalcemia. Twenty PS-HypoPT rats and twenty sham-operated controls (Crl) underwent behavioral testing in a Morris Water Maze (MWM), Open Field (OF), and Elevated Plus Maze (EPM). RESULTS: In the MWM, PTx rats showed a higher Escape Latency Time compared to Crl rats (p < 0.05); we observed a statistically significant improvement in the performance (day 1 to 8 p < 0.001), which was less pronounced in PTx group. In the OF test, the time and distance spent in the zone of interest were significantly lower in the PTx group compared with the Crl (p < 0.01 and p < 0.01). In the EPM experiment, the time spent in the close arm was significantly higher in the PTx group compared with the Crl (p < 0.01). CONCLUSIONS: This animal model of PS-HypoPT shows an impairment in spatial memory, which improved after training, and a marked anxiety-like behavior, resembling the condition of patients with PS-HypoPT. Further studies are needed to elucidate mechanisms.

16.
J Clin Med ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068253

RESUMO

Alzheimer's disease (AD) is characterized by massive neuronal death, brain atrophy, and loss of neurons and synapses, which all lead to a progressive cognitive decline. Neuroinflammation has been recently identified as one of the main causes of AD progression, and microglia cells are considered to have a central role in this process. Growing evidence suggests that cannabinoids may be used as preventive treatment for AD. An altered expression of the endocannabinoids (eCBs) and their receptors (CBRs) is reported in several neurodegenerative disorders, including AD. Moreover, the modulation of CBRs demonstrated neuroprotective effects in reducing aggregated protein deposition, suggesting the therapeutic potential of natural and synthetic CBR ligands in the treatment of neurodegenerative proteinopathies. Here, we review the current knowledge regarding the involvement of CBRs in the modulation of microglia activation phenotypes, highlighting the role of neuroinflammation in the pathogenesis of neurodegenerative diseases, like AD. We also provide an overview of recently developed candidate drugs targeting CBRs that may afford a new innovative strategy for the treatment and management of AD.

17.
Biomolecules ; 13(7)2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509065

RESUMO

Inflammation of the adipose tissue contributes to the onset and progression of several chronic obesity-related diseases. The two most important lipophilic diterpenoid compounds found in the root of Salvia milthorrhiza Bunge (also called Danshen), tanshinone IIA (TIIA) and cryptotanshinone (CRY), have many favorable pharmacological effects. However, their roles in obesity-associated adipocyte inflammation and related sub-networks have not been fully elucidated. In the present study, we investigated the gene, miRNAs and protein expression profile of prototypical obesity-associated dysfunction markers in inflamed human adipocytes treated with TIIA and CRY. The results showed that TIIA and CRY prevented tumor necrosis factor (TNF)-α induced inflammatory response in adipocytes, by counter-regulating the pattern of secreted cytokines/chemokines associated with adipocyte inflammation (CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, IL-6, IL-8, MIF and PAI-1/Serpin E1) via the modulation of gene expression (as demonstrated for CCL2/MCP-1, CXCL10/IP-10, CCL5/RANTES, CXCL1/GRO-α, and IL-8), as well as related miRNA expression (miR-126-3p, miR-223-3p, miR-124-3p, miR-155-5p, and miR-132-3p), and by attenuating monocyte recruitment. This is the first demonstration of a beneficial effect by TIIA and CRY on adipocyte dysfunction associated with obesity development and complications, offering a new outlook for the prevention and/or treatment of metabolic diseases.


Assuntos
Quimiocina CCL5 , MicroRNAs , Humanos , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Interleucina-8/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adipócitos/metabolismo
18.
Biomed Pharmacother ; 157: 114014, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36379119

RESUMO

Liver fibrosis is the result of a chronic pathological condition caused by the activation of hepatic stellate cells (HSCs), which induces the excessive deposition of extracellular matrix. Fibrogenesis is sustained by an exaggerated production of reactive oxidative species (ROS) by NADPH oxidases (NOXs), which are overactivated in hepatic inflammation. In this study, we investigated the antifibrotic properties of two phenolic compounds of natural origin, tyrosol (Tyr) and hydroxytyrosol (HTyr), known for their antioxidant and anti-inflammatory effects. We assessed Tyr and HTyr antifibrotic and antioxidant activity both in vitro, by a co-culture of LX2, HepG2 and THP1-derived Mϕ macrophages, set up to simulate the hepatic microenvironment, and in vivo, in a mouse model of liver fibrosis obtained by carbon tetrachloride treatment. We evaluated the mRNA and protein expression of profibrotic and oxidative markers (α-SMA, COL1A1, NOX1/4) by qPCR and/or immunocytochemistry or immunohistochemistry. The expression of selected miRNAs in mouse livers were measured by qPCR. Tyr and HTyr reduces fibrogenesis in vitro and in vivo, by downregulating all fibrotic markers. Notably, they also modulated oxidative stress by restoring the physiological levels of NOX1 and NOX4. In vivo, this effect was accompanied by a transcriptional regulation of inflammatory genes and of 2 miRNAs involved in the control of oxidative stress damage (miR-181-5p and miR-29b-3p). In conclusion, Tyr and HTyr exert antifibrotic and anti-inflammatory effects in preclinical in vitro and in vivo models of liver fibrosis, by modulating hepatic oxidative stress, representing promising candidates for further development.


Assuntos
MicroRNAs , NADPH Oxidases , Camundongos , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , MicroRNAs/metabolismo , Fígado/metabolismo , Células Estreladas do Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/patologia , Antioxidantes/metabolismo , Anti-Inflamatórios/farmacologia
19.
Front Neurosci ; 16: 868750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516813

RESUMO

Rhodopsin (RHO) mutations are responsible for 25-40% of the dominant cases of retinitis pigmentosa (RP) with different severity and progression rates. The Tvrm4 mice, heterozygous for an I307N dominant mutation of RHO, display a normal retinal phenotype when raised in ambient light conditions, but undergo photoreceptor degeneration when briefly exposed to strong white light. Here, The Tvrm4 mice is pre-treated with naringenin 100 mg/kg/die, quercetin 100 mg/kg/die, naringenin 50 + quercercetin 100 mg/kg/die or vehicle dimethyl sulfoxide (DMSO 0.025%) in the drinking water for 35 days. On the 30th day, retinal degeneration was induced by exposure for 1 min to the white light of 12,000 lux intensity, and the treatment was repeated for another 5 days. At the end of the protocol retinal functionality was tested by recording an electroretinogram (ERG). The retinal tissue was collected and was used for further analyses, including immunohistochemically, biochemical, and molecular biology assays. The data obtained show that treatment with nutraceutical molecules is effective in counteracting retinal degeneration by preserving the functionality of photoreceptors and increasing the antioxidant and anti-apoptotic pathways of retinal cells. The present data confirm that nutraceutical molecules are effective in slowing photoreceptor degeneration in a mutation-independent way by modulating the antioxidant response of the retina at the gene expression level.

20.
Front Chem ; 10: 984069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238097

RESUMO

It is well known that G protein-coupled receptors (GPCRs) assume multiple active states. Orthosteric ligands and/or allosteric modulators can preferentially stabilize specific conformations, giving rise to pathway-biased signaling. One of the most promising strategies to expand the repertoire of signaling-selective GPCR activators consists of dualsteric agents, which are hybrid compounds consisting of orthosteric and allosteric pharmacophoric units. This approach proved to be very promising showing several advantages over monovalent targeting strategies, including an increased affinity or selectivity, a bias in signaling pathway activation, reduced off-target activity and therapeutic resistance. Our study focused on the cannabinoid receptor type 2 (CB2R), considered a clinically promising target for the control of brain damage in neurodegenerative disorders. Indeed, CB2R was found highly expressed in microglial cells, astrocytes, and even in some neuron subpopulations. Here, we describe the design, synthesis, and biological evaluation of two new classes of potential dualsteric (bitopic) CB2R ligands. The new compounds were obtained by connecting, through different linkers, the pharmacophoric portion of the CB2R positive allosteric modulator (PAM), EC21a, with that of the CB2R selective orthosteric agonist LV62, both developed in our laboratories. A preliminary screening enabled us to identify compound JR64a as the most promising of the series. Indeed, functional examination highlighted a signaling 'bias' in favor of G protein activation over ßarrestin2 recruitment, combined with high affinity for CB2R and the ability to efficiently prevent inflammation in human microglial cells (HMC3) exposed to LPS/TNFα stimulation, thus demonstrating great promise for the treatment of neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA