Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 384(6701): eadh9979, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870291

RESUMO

Understanding cellular architectures and their connectivity is essential for interrogating system function and dysfunction. However, we lack technologies for mapping the multiscale details of individual cells and their connectivity in the human organ-scale system. We developed a platform that simultaneously extracts spatial, molecular, morphological, and connectivity information of individual cells from the same human brain. The platform includes three core elements: a vibrating microtome for ultraprecision slicing of large-scale tissues without losing cellular connectivity (MEGAtome), a polymer hydrogel-based tissue processing technology for multiplexed multiscale imaging of human organ-scale tissues (mELAST), and a computational pipeline for reconstructing three-dimensional connectivity across multiple brain slabs (UNSLICE). We applied this platform for analyzing human Alzheimer's disease pathology at multiple scales and demonstrating scalable neural connectivity mapping in the human brain.


Assuntos
Doença de Alzheimer , Encéfalo , Imagem Molecular , Humanos , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem Molecular/métodos , Fenótipo , Hidrogéis/química , Conectoma
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 238-242, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085649

RESUMO

As advances in microscopy imaging provide an ever clearer window into the human brain, accurate reconstruction of neural connectivity can yield valuable insight into the relationship between brain structure and function. However, human manual tracing is a slow and laborious task, and requires domain expertise. Automated methods are thus needed to enable rapid and accurate analysis at scale. In this paper, we explored deep neural networks for dense axon tracing and incorporated axon topological information into the loss function with a goal to improve the performance on both voxel-based segmentation and axon centerline detection. We evaluated three approaches using a modified 3D U-Net architecture trained on a mouse brain dataset imaged with light sheet microscopy and achieved a 10% increase in axon tracing accuracy over previous methods. Furthermore, the addition of centerline awareness in the loss function outperformed the baseline approach across all metrics, including a boost in Rand Index by 8%.


Assuntos
Algoritmos , Imageamento Tridimensional , Animais , Axônios , Encéfalo/diagnóstico por imagem , Humanos , Imageamento Tridimensional/métodos , Camundongos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA