Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(11): 4583-4762, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35575644

RESUMO

Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.


Assuntos
Desenvolvimento Industrial , Água , Eletricidade , Eletrólise , Humanos , Hidrogênio
2.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014518

RESUMO

Reducing the amount of noble metals in catalysts for electrochemical conversion devices is paramount if these devices are to be commercialized. Taking advantage of the high degree of particle property control displayed by the sonochemical method, we set out to synthesize Cu@Pt bimetallic nanocatalysts in an effort to improve the mass activity towards the hydrogen evolution reaction. At least 17 times higher mass activity was found for the carbon supported Cu@Pt bimetallic nanocatalyst (737 mA mg−1, E = −20 mV) compared to carbon supported Pt nanocatalysts prepared with the same ultrasound conditions (44 mA mg−1, E = −20 mV). The synthesis was found to proceed with the sonochemical formation of Cu and Cu2O nanoparticles with the addition of PtCl4 leading to galvanic displacement of the Cu-nanoparticles and the formation of a Pt-shell around the Cu-core.

3.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431792

RESUMO

In this manuscript, we are reporting for the first time one dimensional (1D) cerium hydrogen phosphate (Ce(HPO4)2.xH2O) electrode material for supercapacitor application. In short, a simple hydrothermal technique was employed to prepare Ce(HPO4)2.xH2O. The maximum surface area of 82 m2 g-1 was obtained from nitrogen sorption isotherm. SEM images revealed Ce(HPO4)2.xH2O exhibited a nanorod-like structure along with particles and clusters. The maximum specific capacitance of 114 F g-1 was achieved at 0.2 A g-1 current density for Ce(HPO4)/NF electrode material in a three-electrode configuration. Furthermore, the fabricated symmetric supercapacitor (SSC) based on Ce(HPO4)2.xH2O//Ce(HPO4)2.xH2O demonstrates reasonable specific energy (2.08 Wh kg-1), moderate specific power (499.88 W kg-1), and outstanding cyclic durability (retains 92.7% of its initial specific capacitance after 5000 GCD cycles).


Assuntos
Cério , Hidrogênio , Eletrodos , Capacitância Elétrica , Fosfatos
4.
J Am Chem Soc ; 142(44): 18844-18858, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33084316

RESUMO

The drive toward sustainable phosphorus (P) recovery from agricultural and municipal wastewater streams has intensified. However, combining P recovery with energy conservation is perhaps one of the greatest challenges of this century. In this study, we report for the first time the simultaneous electroless production of struvite and dihydrogen from aqueous ammonium dihydrogen phosphate (NH4H2PO4) solutions in contact with either a pure magnesium (Mg) or a Mg alloy as the anode and 316 stainless steel (SS) as the cathode placed in a bench-scale electrochemical reactor. During the electroless process (i.e., in the absence of external electrical power), the open circuit potential (OCP), the formation of struvite on the anode, and the generation of dihydrogen at the cathode were monitored. We found that struvite is formed, and that struvite crystal structure/morphology and precipitate film thickness are affected by the concentration of the HnPO4n-3/NH4+ in solution and the composition of the anode. The pure Mg anode produced a porous 0.6-4.1 µm thick film, while the AZ31 Mg alloy produced a more compact 1.7-9.9 µm thick struvite film. Kinetic analyses revealed that Mg dissolution to Mg2+ followed mostly a zero-order kinetic rate law for both Mg anode materials, and the rate constants (k) depended upon the struvite layer morphology. Fourier-transform infrared spectrometry, X-ray diffraction, and scanning electron microscopy indicated that the synthesized struvite was of high quality. The dihydrogen and Mg2+ in solution were detected by a gas chromatography-thermal conductivity detector and ion chromatography, respectively. Furthermore, we fully demonstrate that the reactor was able to remove ∼73% of the HnPO4n-3 present in a natural poultry wastewater as mainly struvite. This study highlights the feasibility of simultaneously producing struvite and dihydrogen from wastewater effluents with no energy input in a green and sustainable approach.

5.
Phys Chem Chem Phys ; 22(13): 6993-7003, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32190866

RESUMO

Common for tree-shaped, space-filling flow-field plates in polymer electrolyte fuel cells is their ability to distribute reactants uniformly across the membrane area, thereby avoiding excess concentration polarization or entropy production at the electrodes. Such a flow field, as predicted by Murray's law for circular tubes, was recently shown experimentally to give a better polarization curve than serpentine or parallel flow fields. In this theoretical work, we document that a tree-shaped flow-field, composed of rectangular channels with T-shaped junctions, has a smaller entropy production than the one based on Murray's law. The width w0 of the inlet channel and the width scaling parameter, a, of the tree-shaped flow-field channels were varied, and the resulting Peclet number at the channel outlets was computed. We show, using 3D hydrodynamic calculations as a reference, that pressure drops and channel flows can be accounted for within a few percents by a quasi-1D model, for most of the investigated geometries. Overall, the model gives lower energy dissipation than Murray's law. The results provide new tools and open up new possibilities for flow-field designs characterized by uniform fuel delivery in fuel cells and other catalytic systems.

6.
Entropy (Basel) ; 22(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285951

RESUMO

The fractal-type flow-fields for fuel cell (FC) applications are promising, due to their ability to deliver uniformly, with a Peclet number Pe~1, the reactant gases to the catalytic layer. We review fractal designs that have been developed and studied in experimental prototypes and with CFD computations on 1D and 3D flow models for planar, circular, cylindrical and conical FCs. It is shown, that the FC efficiency could be increased by design optimization of the fractal system. The total entropy production (TEP) due to viscous flow was the objective function, and a constant total volume (TV) of the channels was used as constraint in the design optimization. Analytical solutions were used for the TEP, for rectangular channels and a simplified 1D circular tube. Case studies were done varying the equivalent hydraulic diameter (Dh), cross-sectional area (DΣ) and hydraulic resistance (DZ). The analytical expressions allowed us to obtain exact solutions to the optimization problem (TEP→min, TV=const). It was shown that the optimal design corresponds to a non-uniform width and length scaling of consecutive channels that classifies the flow field as a quasi-fractal. The depths of the channels were set equal for manufacturing reasons. Recursive formulae for optimal non-uniform width scaling were obtained for 1D circular Dh -, DΣ -, and DZ -based tubes (Cases 1-3). Appropriate scaling of the fractal system providing uniform entropy production along all the channels have also been computed for Dh -, DΣ -, and DZ -based 1D models (Cases 4-6). As a reference case, Murray's law was used for circular (Case 7) and rectangular (Case 8) channels. It was shown, that Dh-based models always resulted in smaller cross-sectional areas and, thus, overestimated the hydraulic resistance and TEP. The DΣ -based models gave smaller resistances compared to the original rectangular channels and, therefore, underestimated the TEP. The DZ -based models fitted best to the 3D CFD data. All optimal geometries exhibited larger TEP, but smaller TV than those from Murray's scaling (reference Cases 7,8). Higher TV with Murray's scaling leads to lower contact area between the flow-field plate with other FC layers and, therefore, to larger electric resistivity or ohmic losses. We conclude that the most appropriate design can be found from multi-criteria optimization, resulting in a Pareto-frontier on the dependencies of TEP vs TV computed for all studied geometries. The proposed approach helps us to determine a restricted number of geometries for more detailed 3D computations and further experimental validations on prototypes.

7.
Chemistry ; 25(11): 2868-2876, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30548500

RESUMO

The development of alternative electrocatalysts exhibiting high activity in the oxygen reduction reaction (ORR) is vital for the deployment of large-scale clean energy devices, such as fuel cells and zinc-air batteries. N-doped carbon materials offer a promising platform for the design and synthesis of electrocatalysts due to their high ORR activity, high surface area, and tunable porosity. In this study, materials in which MnO nanoparticles are entrapped in N-doped mesoporous carbon (MnO/NC) were developed as electrocatalysts for the ORR, and their performances were evaluated in zinc-air batteries. The obtained carbon materials had large surface area and high electrocatalytic activity toward the ORR. The carbon compounds were fabricated by using NaCl as template in a one-pot process, which significantly simplifies the procedure for preparing mesoporous carbon materials and in turn reduces the total cost. A primary zinc-air battery based on this material exhibits an open-circuit voltage of 1.49 V, which is higher than that of conventional zinc-air batteries with Pt/C (Pt/C cell) as ORR catalyst (1.41 V). The assembled zinc-air battery delivered a peak power density of 168 mW cm-2 at a current density of about 200 mA cm-2 , which is higher than that of an equivalent Pt/C cell (151 mW cm-2 at a current density of ca. 200 mA cm-2 ). The electrocatalytic data revealed that MnO/NC is a promising nonprecious-metal ORR catalyst for practical applications in metal-air batteries.

8.
Angew Chem Int Ed Engl ; 58(48): 17383-17392, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31539189

RESUMO

The electrodeposition of noble metals using corresponding dissolved metal salts represents an interesting process for the improvement of the electrocatalytic hydrogen evolution reaction (HER) properties of less active substrate materials. The fact that only a small fraction of the dissolved noble metals reaches the substrate represents a serious obstacle to this common procedure. We therefore chose a different path. It was found that the HER activity of Ni42 alloy drastically increased (η=140 mV at j=10 mA cm-2 ; pH 1) when a platinum counter electrode was used during polarization experiments in acid. This improvement was caused by a platinum transfer from the platinum anode to the steel cathode, a process which occurred simultaneously to the hydrogen evolution. The negligible accumulation of Pt (26 µg) in the electrolyte turns this straight-forward transfer procedure into a highly cost-effective, environmentally friendly, and waste reducing approach for the generation of cheap, stable and effective HER electrodes.

9.
Ultrason Sonochem ; 103: 106794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38364482

RESUMO

Large scale production of electrocatalysts for electrochemical energy conversion devices such as proton exchange membrane fuel cells must be developed to reduce their cost. The current chemical reduction methods used for this synthesis suffer from problems with achieving similar particle properties such as particle size and catalytic activity when scaling up the volume or the precursor concentration. The continuous production of reducing agents through the sonochemical synthesis method could help maintain the reducing conditions (and also the particle properties) upon increasing the reactor volume. In this work we demonstrate that the reducing conditions of Pt-nanoparticles are indeed maintained when the reactor volume is increased from 200 mL to 800 mL. Similar particle sizes, 2.1(0.3) nm at 200 mL and 2.3(0.4) nm at 800 mL, and catalytic activities towards the oxygen reduction reaction (ORR) are maintained as well. The reducing conditions were assessed through TiOSO4 dosimetry, sonochemiluminesence imaging, acoustic power measurements, and Pt(II) reduction rate measurements. Cyclic voltammetry, CO-stripping, hydrogen evolution measurements, ORR measurements, and electron microscopy were used to evaluate the catalytic activity and particle size. The similar particle properties displayed from the two reactor volumes suggest that the sonochemical synthesis of Pt-nanoparticles is suitable for large scale production.

10.
J Phys Chem B ; 127(7): 1628-1644, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36786732

RESUMO

Molecular dynamics simulation is applied to investigate the effect of two ionic liquids (IL) on the nucleation and growth of (nano)cavities in water under tension and on the cavities' collapse following the release of tension. Simulations of the same phenomena in two pure water samples of different sizes are carried out for comparison. The first IL, i.e., tetra-ethylammonium mesylate ([Tea][Ms]), is relatively hydrophilic and its addition to water at 25 wt % concentration decreases its tendency to nucleate cavities. Apart from quantitative details, cavity formation and collapse are similar to those taking place in water and qualitatively follow the Rayleigh-Plesset (RP) equation. The second IL, i.e., tetrabutyl phosphonium 2,4-dimethylbenzenesulfonate ([P4444][DMBS]), is amphiphilic and forms nanostructured solutions with water. At 25 wt % concentrations, [P4444][DMBS] favors the nucleation of bubbles that tend to form at the interface between water-rich and IL-rich domains. Cavity collapse in [P4444][DMBS]/water solutions are greatly hindered by a shell of ions decorating the interface between the solution and the vapor phase. A similar effect is observed for the equilibration of a population of bubbles of different sizes. The drastic slowing down of the bubbles' relaxation processes suggests ways to produce long-lived nanometric cavities in the liquid phase that could be useful for nanotechnology and drug delivery.

11.
J Colloid Interface Sci ; 650(Pt A): 94-104, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399754

RESUMO

The activation of hole trap states in bismuth vanadate (BiVO4) is considered an effective strategy to enhance the photoelectrochemical (PEC) water-splitting activity. Herein, we propose a theoretical and experimental study of tantalum (Ta) doping to BiVO4 leading to the introduction of hole trap states for the enhanced PEC activity. The doping of Ta is found to alter the structural and chemical surroundings via displacement of vanadium (V) atoms that cause distortions in the lattice via the formation of hole trap states. A significant enhancement of photocurrent to ∼4.2 mA cm-2 was recorded attributing to the effective charge separation of efficiency of ∼96.7 %. Furthermore, the doping of Ta in the BiVO4 lattice offers improved charge transport in bulk and decreased charge transfer resistance at the electrolyte interface. The Ta-doped BiVO4 displays the effective production of hydrogen (H2) and oxygen (O2) under AM 1.5 G illumination with a faradaic efficiency of 90 %. Moreover, the density functional theory (DFT) study confirms the decrease in optical band gap and the activation of hole trap states below the conduction band (CB) with a contribution of Ta towards both valence and CB that increases the charge separation and majority charge carrier density, respectively. The findings of this work propose that the displacement of V sites with Ta atoms in BiVO4 photoanodes is an efficient approach for enhanced PEC activity.

12.
Polymers (Basel) ; 15(9)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37177289

RESUMO

Water electrolysis coupled with renewable energy is one of the principal methods for producing green hydrogen (or renewable hydrogen). Among the different electrolysis technologies, the evolving anion exchange membrane water electrolysis (AEMWE) shows the utmost promise for the manufacture of green hydrogen in an inexpensive way. In the present review, we highlight the most current and noteworthy achievements of AEMWE, which include the advancements in increasing the polymer anionic conductivity, understanding the mechanism of degradation of AEM, and the design of the electrocatalyst. The important issues affecting the AEMWE behaviour are highlighted, and future constraints and openings are also discussed. Furthermore, this review provides strategies for producing dynamic and robust AEMWE electrocatalysts.

13.
Nanomaterials (Basel) ; 13(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37764627

RESUMO

The development of a single junction photoelectrode material having specific properties is essential and challenging for the efficient application in solar water splitting for oxygen production and a high value-added product, hydrogen. Moreover, the present material solutions based on binary metal oxides offer limited catalytic activity and hydrogen production efficiency. Therefore, it is paramount to develop and exploit a unique range of materials derived from ternary metal oxides with specifically engineered properties to advance in photoelectrochemical (PEC) water splitting. Among the ternary oxides, copper vanadates offer promising characteristics, such as a narrow bandgap and catalytic surface properties along with favorable band edges for facile oxygen evolution reaction (OER), which is considered the bottleneck step in performing overall water dissociation. Furthermore, the copper vanadates allow the tuning of the stoichiometry through which a wide range of polymorphs and materials could be obtained. This review provides a complete outlook on the range of copper vanadates and the established synthesis approach, morphology, crystal structure, band edge properties, and PEC characterizations. Mainly, the underlying charge dynamic properties, carrier path length, effect of doping, and influence of surface catalysts are discussed. The review concludes that the advancement toward obtaining low-bandgap materials is a main challenge to overcome the limitations for efficient water dissociation to OER and copper vanadates, which offer a promising solution with their unique properties and advantages. Importantly, intense and strategically focused research is vital to overcome the scientific challenges involved in copper vanadates and to explore and exploit new polymorphs to set new efficiency benchmarks and PEC water splitting solutions.

14.
ACS Appl Energy Mater ; 6(9): 4520-4529, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37181247

RESUMO

In this investigation, we report on the development of a method for activating polycrystalline metallic nickel (Ni(poly)) surfaces toward the hydrogen evolution reaction (HER) in N2-saturated 1.0 M KOH aqueous electrolyte through continuous and pulsed ultrasonication (24 kHz, 44 ± 1.40 W, 60% acoustic amplitude, ultrasonic horn). It is found that ultrasonically activated Ni shows an improved HER activity with a much lower overpotential of -275 mV vs RHE at -10.0 mA cm-2 when compared to nonultrasonically activated Ni. It was observed that the ultrasonic pretreatment is a time-dependent process that gradually changes the oxidation state of Ni and longer ultrasonication times result in higher HER activity as compared to untreated Ni. This study highlights a straightforward strategy for activating nickel-based materials by ultrasonic treatment for the electrochemical water splitting reaction.

15.
Sci Rep ; 13(1): 6183, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061599

RESUMO

Maintaining nanoparticle properties when scaling up a chemical synthesis is challenging due to the complex interplay between reducing agents and precursors. A sonochemical synthesis route does not require the addition of reducing agents as they are instead being continuously generated in-situ by ultrasonic cavitation throughout the reactor volume. To optimize the sonochemical synthesis of nanoparticles, understanding the role of radical scavengers is paramount. In this work we demonstrate that optimum scavenger concentrations exist at which the rate of Ag-nanoparticle formation is maximized. Titanyl dosimetry experiments were used in conjunction with Ag-nanoparticle formation rates to determine these optimum scavenger concentrations. It was found that more hydrophobic scavengers require lower optimum concentrations with 1-butanol < 2-propanol < ethanol < methanol < ethylene glycol. However, the optimum concentration is shifted by an order of magnitude towards higher concentrations when pyrolytic decomposition products contribute to the reduction. The reduction rate is also enhanced considerably.

16.
Ultrason Sonochem ; 99: 106540, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37542752

RESUMO

Ultrasonic waves can induce physical and chemical changes in liquid media via acoustic cavitation. Various applications have benefitted from utilizing these effects, including but not limited to the synthesis of functional materials, emulsification, cleaning, and processing. Several books and review articles in the public domain cover both fundamental and applied aspects of ultrasonics and sonochemistry. The Editors of the Ultrasonics Sonochemistry journal possess diverse expertise in this field, from theoretical and experimental aspects of acoustic cavitation to materials synthesis, environmental remediation, and sonoprocessing. This article provides Editors' perspectives on various aspects of ultrasonics and sonochemistry that may benefit students and early career researchers.

17.
Sci Rep ; 13(1): 21486, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057368

RESUMO

This work reports the synthesis of poly (aniline-co-4-nitroaniline) deposited on a three-dimensional nanostructured nickel (3D-Ni) film, where both layers were fabricated via potentiostatic electrodeposition. The obtained electrocatalyst exhibited excellent electrochemical activity for the Hydrogen Evolution Reaction (HER) with small overpotentials of - 195 and - 325 mV at - 10 and - 100 mAcm-2, respectively, and a low Tafel slope of 53.3 mV dec-1 in seawater. Additionally, the electrocatalyst exhibited good stability after 72 h operation under a constant potential of - 1.9 V vs. RHE. The efficient HER performance of the as-prepared catalyst was found to originate from the synergy between the conducting polymer and three-dimensional nickel nanoparticles with a large electrochemical active surface area. Moreover, the results obtained from electrochemical impedance spectroscopy (EIS) measurements revealed that the presence of 3D-Ni layer improved the kinetics of HER by reducing the charge transfer resistance for the electrocatalyst.

18.
Phys Chem Chem Phys ; 14(9): 3134-9, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22282058

RESUMO

A theoretical investigation is presented of alloying platinum with titanium to form binary Pt-Ti nanoalloys as an alternative to the expensive pure platinum catalysts commonly used for Proton Exchange Membrane Fuel Cell cathode electrocatalysts. Density Functional Theory calculations are performed to investigate compositional effects on structural properties as well as Oxygen Reduction Reaction kinetics and poisoning effects. High symmetry A(32)-B(6) clusters are studied to investigate structural properties. From these structures binding energies of hydroxyl and carbon monoxide are studied on a range of sites on the surface of the clusters. Promising results are obtained suggesting that the bimetallic Pt-Ti nanoalloys may exhibit enhanced properties compared to pure platinum catalysts.

19.
Ultrason Sonochem ; 86: 106013, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483165

RESUMO

The development of cost-effective and active water-splitting electrocatalysts is an essential step toward the realization of sustainable energy. Its success requires an intensive improvement in the kinetics of the anodic half-reaction of the oxygen evolution reaction (OER), which determines the overall system efficiency to a large extent. In this work, we designed a facile and one-route strategy to activate the surface of metallic nickel (Ni) for the OER in alkaline media by ultrasound (24 kHz, 44 W, 60% acoustic amplitude, ultrasonic horn). Sonoactivated Ni showed enhanced OER activity with a much lower potential at + 10 mA cm-2 of + 1.594 V vs. RHE after 30 min ultrasonic treatment compared to + 1.617 V vs. RHE before ultrasonication. In addition, lower charge transfer resistance of 11.1 Ω was observed for sonoactivated Ni as compared to 98.5 Ω for non-sonoactivated Ni. In our conditions, ultrasound did not greatly affect the electrochemical surface area (Aecsa) and Tafel slopes however, the enhancement of OER activity can be due to the formation of free OH• radicals resulting from cavitation bubbles collapsing at the electrode/electrolyte interface.

20.
Ultrason Sonochem ; 84: 105979, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35299037

RESUMO

The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) occurring at the Raney-Ni mesh electrode in 30 wt.-% aqueous KOH solution were studied in the absence (silent) and presence of ultrasound (408 kHz, ∼54 W, 100% acoustic amplitude) at different electrolyte temperatures (T = 25, 40 and 60 °C). Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) experiments were performed to analyse the electrochemical behaviour of the Raney-Ni electrode under these conditions. Under silent conditions, it was found that the electrocatalytic activity of Raney-Ni towards the HER and the OER depends upon the electrolyte temperature, and higher current densities at lower overpotentials were achieved at elevated temperatures. It was also observed that the HER activity of Raney-Ni under ultrasonic conditions increased at low temperatures (e.g., 25 °C) while the ultrasonic effect on the OER was found to be insignificant. In addition, it was observed that the ultrasonic effect on both the HER and OER decreases by elevating the temperature. In our conditions, it is suggested that ultrasound enhances the electrocatalytic performance of Raney-Ni towards the HER due to principally the efficient gas bubble removal from the electrode surface and the dispersion of gas bubbles into the electrolyte, and this effect depends upon the behaviour of the hydrogen and oxygen gas bubbles in alkaline media.


Assuntos
Hidrogênio , Oxigênio , Eletrodos , Eletrólitos , Oxigênio/química , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA