Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(9): e202300030, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36867729

RESUMO

One of the main problems in developing immunosensors featuring carbon nanotubes (CNTs) is immobilizing antibodies (Abs) onto the CNT surface to afford selective binding to target antigens (Ags). In this work, we developed a practical supramolecular Ab conjugation strategy based on resorc[4]arene modifiers. To improve the Ab orientation on the CNTs surface and optimizing the Ab/Ag interaction, we exploited the host-guest approach by synthesizing two newly resorc[4]arene linkers R1 and R2 via well-established procedures. The upper rim was decorated with eight methoxyl groups to promote selective recognition of the fragment crystallizable (Fc ) region of the Ab. Moreover, the lower rim was functionalized with 3-bromopropyloxy or 3-azidopropiloxy substituents to bind the macrocycles on the multi-walled carbon nanotubes (MWCNTs) surface. Accordingly, several chemical modifications of MWCNTs were evaluated. After the morphological and electrochemical characterization of nanomaterials, the resorc[4]arene-modified MWCNTs were deposited onto a glassy carbon electrode surface to evaluate their potential applicability for label-free immunosensor development. The most promising system showed an improved electrode active area (AEL ) of almost 20 % and a site-oriented immobilization of the SARS-CoV-2 spike protein S1 antibody (Ab-SPS1). The developed immunosensor revealed a good sensitivity (23.64 µA mL ng-1 cm-2 ) towards the SPS1 antigen and a limit of detection (LOD) of 1.01 ng mL-1 .


Assuntos
Técnicas Biossensoriais , COVID-19 , Nanotubos de Carbono , Humanos , Técnicas Biossensoriais/métodos , Nanotubos de Carbono/química , Imunoensaio , SARS-CoV-2 , Anticorpos/química , Antígenos , Limite de Detecção , Técnicas Eletroquímicas/métodos , Ouro/química
2.
Bioconjug Chem ; 34(3): 529-537, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36753752

RESUMO

In recent years, several efforts have been made to develop selective, sensitive, fast response, and miniaturized immunosensors with improved performance for the monitoring and screening of analytes in several matrices, significantly expanding the use of this technology in a broad range of applications. However, one of the main technical challenges in developing immunosensors is overcoming the complexity of binding antibodies (Abs) to the sensor surface. Most immobilizing approaches lead to a random orientation of Abs, resulting in lower binding site density and immunoaffinity. In this context, supramolecular chemistry has emerged as a suitable surface modification tool to achieve the preorganization of artificial receptors and to improve the functional properties of self-assembled monolayers. Herein, a supramolecular chemistry/nanotechnology-based platform was conceived to develop sensitive label-free electrochemical immunosensors, by using a resorcarene macrocycle as an artificial linker for the oriented antibody immobilization. To this aim, a water-soluble bifunctional resorc[4]arene architecture (RW) was rationally designed and synthesized to anchor gold-coated magnetic nanoparticles (Au@MNPs) and to maximize the amount of the active immobilized antibody (Ab) in the proper "end-on" orientation. The resulting supramolecular chemistry-modified nanoparticles, RW@Au@MNPs, were deposited onto graphite screen printed electrodes which were then employed to immobilize three different Abs. Furthermore, an immunosensor for atrazine (ATZ) analysis was realized and characterized by the differential pulse voltammetry technique to demonstrate the validity of the developed biosensing platform as a proof of concept for electrochemical immunosensors. The RW-based immunosensor improved AbATZ loading on Au@MNPs and sensitivity toward ATZ by almost 1.5 times compared to the random platform. Particularly, the electrochemical characterization of the developed immunosensor displays a linearity range toward ATZ within 0.05-1.5 ng/mL, a limit of detection of 0.011 ng/ml, and good reproducibility and stability. The immunosensor was tested by analyzing spiked fortified water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of ATZ in real matrices. Therefore, the results highlighted the successful application of the resorc[4]arene-based sensor design strategy for developing sensitive electrochemical immunosensors with improved analytical performance and simplifying the Ab immobilization procedure.


Assuntos
Técnicas Biossensoriais , Nanopartículas de Magnetita , Nanopartículas Metálicas , Ouro/química , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Anticorpos/química , Eletrodos , Nanopartículas Metálicas/química , Limite de Detecção
3.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513297

RESUMO

This work aimed to develop an easy-to-use smartphone-based electrochemical biosensor to quickly assess a coffee blend's total polyphenols (Phs) content at the industrial and individual levels. The device is based on a commercial carbon-based screen-printed electrode (SPE) modified with multi-walled carbon nanotubes (CNTs) and gold nanoparticles (GNPs). At the same time, the biological recognition element, Laccase from Trametes versicolor, TvLac, was immobilized on the sensor surface by using glutaraldehyde (GA) as a cross-linking agent. The platform was electrochemically characterized to ascertain the influence of the SPE surface modification on its performance. The working electrode (WE) surface morphology characterization was obtained by scanning electron microscopy (SEM) and Fourier-transform infrared (FT-IR) imaging. All the measurements were carried out with a micro-potentiostat, the Sensit Smart by PalmSens, connected to a smartphone. The developed biosensor provided a sensitivity of 0.12 µA/µM, a linear response ranging from 5 to 70 µM, and a lower detection limit (LOD) of 2.99 µM. Afterward, the biosensor was tested for quantifying the total Phs content in coffee blends, evaluating the influence of both the variety and the roasting degree. The smartphone-based electrochemical biosensor's performance was validated through the Folin-Ciocâlteu standard method.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Nanotubos de Carbono/química , Café , Ouro/química , Trametes , Espectroscopia de Infravermelho com Transformada de Fourier , Smartphone , Nanopartículas Metálicas/química , Eletrodos , Polifenóis , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas
4.
Anal Bioanal Chem ; 414(6): 2055-2064, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35043261

RESUMO

This work presents the realization of a label-free electrochemical immunosensor for the quick, cheap, and straightforward determination of atrazine. This biodevice is based on developing a technological platform where a gold screen printed electrode (Au-SPE) surface was modified by the electrodeposition of a highly porous gold layer. As an internal probe redox, a Prussian Blue thin layer (PB) was then electrosynthetized onto the modified Au-SPE. Atrazine antibody (Ab-ATZ) was immobilized using G protein-functionalized magnetic nanoparticles (MNPs@protG) to ensure the correct orientation of the antibody to enhance the immunoaffinity. Under optimum experimental conditions, the electrochemical characterization of the developed immunosensor displays a linearity range towards atrazine within 0.05-1.5 ng/mL, a LOD of 0.011 ng/mL good reproducibility and stability. The immunosensor was tested in the analysis of spiked drinking water samples with a mean recovery ranging from 95.7 to 108.4%. The overall good analytical performances of this immunodevice suggest its application for the screening and monitoring of atrazine in real matrices.


Assuntos
Atrazina , Técnicas Biossensoriais , Nanopartículas de Magnetita , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro/química , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes
5.
Chemistry ; 26(38): 8400-8406, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32240571

RESUMO

One of the main problems in the development of immunosensors is to overcome the complexity of binding antibodies to the sensor surface. Most immobilizing methods lead to a random orientation of antibodies with a lower binding site density and immunoaffinity. In order to control the orientation of antibody immobilization, several resorc[4]arene derivatives were designed and synthesized. After the spectroscopic characterization of resorc[4]arene self-assembled monolayers (SAMs) onto gold films, the surface coverage and the orientation of insulin antibody (Ab-Ins) were assessed by a surface plasmon resonance (SPR) technique and compared with a random immobilization method. Experimental results combined with theoretical studies confirmed the dipole-dipole interaction as an important factor in antibody orientation and demonstrated the importance of the upper rim functionalization of resorcarenes. Accordingly, resorcarene 5 showed a major binding force towards Ab-Ins thanks to the H-bond interactions with the amine protein groups. Based on these findings, the resorcarene-based immunosensor is a powerful system with improved sensitivity providing new insight into sensor development.


Assuntos
Anticorpos Imobilizados/química , Anticorpos/química , Ouro/química , Ressonância de Plasmônio de Superfície/métodos , Sítios de Ligação
6.
Talanta ; 251: 123755, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932635

RESUMO

We report a new sensitive label-free electrochemical immunosensor to detect Vitamin D3 (25-OHD3) in untreated serum samples. To this aim, a graphite screen printed electrode (SPE) was modified using cysteamine (CYM) functionalized core-shell magnetic nanoparticles (Au@MNPs) then, the 25-OHD3 antibody (AbD) was immobilized via glutaraldehyde crosslinking. The several steps involved in the immunosensor development and 25-OHD3 analysis were monitored by using differential pulse voltammetry (DPV). The developed immunosensor showed a LOD of 2.4 ng mL-1 and a linear range between 7.4 and 70 ng mL-1. The effectiveness of the immunosensor in human serum analysis was assessed by comparing the results obtained with the chemiluminescence-immunoassay (CLIA) reference method. The high sensitivity and excellent agreement with the reference method suggest its potential use as a POCT to monitor hypovitaminosis 25-OHD levels.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Colecalciferol , Cisteamina , Técnicas Eletroquímicas/métodos , Eletrodos , Glutaral , Ouro , Humanos , Imunoensaio/métodos , Limite de Detecção
7.
RSC Adv ; 10(48): 29031-29042, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520043

RESUMO

Lignin nanoparticles (LNPs) acted as a renewable and efficient platform for the immobilization of horseradish peroxidase (HRP) and glucose oxidase (GOX) by a layer by layer procedure. The use of concanavalin A as a molecular spacer ensured the correct orientation and distance between the two enzymes as confirmed by Förster resonance energy transfer measurement. Layers with different chemo-physical properties tuned in a different way the activity and kinetic parameters of the enzymatic cascade, with cationic lignin performing as the best polyelectrolyte in the retention of the optimal Con A aggregation state. Electrochemical properties, temperature and pH stability, and reusability of the novel systems have been studied, as well as their capacity to perform as colorimetric biosensors in the detection of glucose using ABTS and dopamine as chromogenic substrates. A boosting effect of LNPs was observed during cyclovoltammetry analysis. The limit of detection (LOD) was found to be better than, or comparable to, that previously reported for other HRP-GOX immobilized systems, the best results being again obtained in the presence of a cationic lignin polyelectrolyte. Thus renewable lignin platforms worked as smart and functional devices for the preparation of green biosensors in the detection of glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA