RESUMO
Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme involved in the modulation of critical inflammatory pathways as well as in cancer progression. Auto-antibodies against GSTO1-1 were detected in the serum of patients with esophageal squamous cell carcinoma and were proposed as potential biomarkers in the early detection of the disease. Our findings show that anti-GSTO1-1 antibodies can be found in a variety of inflammatory diseases, including autoimmune rheumatoid arthritis, infectious SARS-CoV-2, and trichinellosis. Our findings strongly suggest that anti-GSTO1-1 antibodies may be a marker of tissue damage/inflammation rather than a specific tumor-associated biomarker.
Assuntos
COVID-19 , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Biomarcadores Tumorais , Glutationa Transferase , Humanos , Inflamação , SARS-CoV-2RESUMO
Decades of chemical, biochemical and pathophysiological research have established the relevance of post-translational protein modifications induced by processes related to oxidative stress, with critical reflections on cellular signal transduction pathways. A great deal of the so-called 'redox regulation' of cell function is in fact mediated through reactions promoted by reactive oxygen and nitrogen species on more or less specific aminoacid residues in proteins, at various levels within the cell machinery. Modifications involving cysteine residues have received most attention, due to the critical roles they play in determining the structure/function correlates in proteins. The peculiar reactivity of these residues results in two major classes of modifications, with incorporation of NO moieties (S-nitrosation, leading to formation of protein S-nitrosothiols) or binding of low molecular weight thiols (S-thionylation, i.e. in particular S-glutathionylation, S-cysteinylglycinylation and S-cysteinylation). A wide array of proteins have been thus analyzed in detail as far as their susceptibility to either modification or both, and the resulting functional changes have been described in a number of experimental settings. The present review aims to provide an update of available knowledge in the field, with a special focus on the respective (sometimes competing and antagonistic) roles played by protein S-nitrosations and S-thionylations in biochemical and cellular processes specifically pertaining to pathogenesis of cardiovascular diseases.
Assuntos
Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Glutationa/metabolismo , Óxido Nítrico/metabolismo , Nitrosação , Animais , HumanosAssuntos
Mutação , gama-Glutamiltransferase/sangue , gama-Glutamiltransferase/genética , Idoso , Pré-Escolar , Feminino , Humanos , MasculinoRESUMO
BACKGROUND: Gamma-glutamyltransferase (GGT) is a well-established independent risk factor for cardiovascular mortality related to atherosclerotic disease. Four GGT fractions have been identified in plasma, but only b-GGT fraction accumulates in atherosclerotic plaques, and correlates with other histological markers of vulnerability. The present study was aimed to evaluate whether macrophagic lineage cells may provide a source of b-GGT within the atherosclerotic plaque. METHODS: GGT expression and release were studied in human monocytes isolated from peripheral blood of healthy donors. The growth factors GM-CSF and M-CSF were used to induce differentiation into M1-like and M2-like macrophages, respectively. Plaque GGT was investigated in tissue samples obtained from patients undergoing carotid endoarterectomy. RESULTS: We found that M1-like macrophages express higher levels of GGT as compared to M2-like, and that both monocytes and M1-like macrophages-but not M2-like-are able to release the b-GGT fraction upon activation with pro-inflammatory stimuli. Western blot analysis of b-GGT extracted from plaques confirmed the presence of a GGT immunoreactive peptide coincident with that of macrophages. CONCLUSIONS: Our data indicate that macrophages characterized by a pro-inflammatory phenotype may contribute to intra-plaque accumulation of b-GGT, which in turn may play a role in the progression of atherosclerosis by modulating inflammatory processes and favouring plaque instability.
Assuntos
Regulação da Expressão Gênica , Macrófagos/metabolismo , Monócitos/metabolismo , Placa Aterosclerótica/enzimologia , gama-Glutamiltransferase/metabolismo , Diferenciação Celular , Linhagem da Célula , Cromatografia em Gel , Progressão da Doença , Endarterectomia das Carótidas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Voluntários Saudáveis , Humanos , Inflamação , Leucócitos Mononucleares/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microcirculação , FenótipoRESUMO
A number of experimental studies has documented that S-nitrosoglutathione (GSNO), the main endogenous low-molecular-weight S-nitrosothiol, can exert modulatory effects on inflammatory processes, thus supporting its potential employment in medicine for the treatment of important disease conditions. At molecular level, GSNO effects have been shown to modulate the activity of a series of transcription factors (notably NF-κB, AP-1, CREB and others) as well as other components of signal transduction chains (e.g. IKK-ß, caspase 1, calpain and others), resulting in the modulation of several cytokines and chemokines expression (TNFα, IL-1ß, IFN-γ, IL-4, IL-8, RANTES, MCP-1 and others). Results reported to date are however not univocal, and a single main mechanism of action for the observed anti-inflammatory effects of GSNO has not been identified. Conflicting observations can be explained by differences among the various cell types studies as to the relative abundance of enzymes in charge of GSNO metabolism (GSNO reductase, γ-glutamyltransferase, protein disulfide isomerase and others), as well as by variables associated with the individual experimental models employed. Altogether, anti-inflammatory properties of GSNO seem however to prevail, and exploration of the therapeutic potential of GSNO and analogues appears therefore warranted.
Assuntos
Citocinas/metabolismo , Inflamação/tratamento farmacológico , S-Nitrosoglutationa/farmacologia , Aldeído Oxirredutases/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Quimiocinas/metabolismo , Regulação da Expressão Gênica , Humanos , Isomerases de Dissulfetos de Proteínas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , gama-Glutamiltransferase/metabolismoRESUMO
γ-Glutamyltransferase (γGT) is a cell surface enzyme that catalyzes hydrolysis of the bond linking the glutamate and cysteine residues of glutathione and glutathione-S-conjugates. We have observed that human pancreatic tumor cells and tumor-associated stellate cells express high levels of this enzyme when compared to normal pancreatic epithelial and stellate cells. Detection of the protein in tumor sections correlated with γGT activity on the surface of the cultured tumor and stellate cells. We tested whether the tumor γGT could be employed to deliver a therapeutic to the tumor endothelial cells. GSAO is a glutathione-S-conjugate of a trivalent arsenical that is activated to enter endothelial cells by γGT cleavage of the γ-glutamyl residue. The arsenical moiety triggers proliferation arrest and death of the endothelial cells by targeting the mitochondria. Human pancreatic tumor and stellate cell γGT activated GSAO in culture and γGT activity positively correlated with GSAO-mediated proliferation arrest and death of endothelial cells in Transwell and coculture systems. A soluble form of γGT is found in blood, and we measured the rate of activation of GSAO by this enzyme. We calculated that systemically administered GSAO would circulate through the pancreatic blood supply several times before appreciable activation by normal blood levels of γGT. In support of this finding, tumor γGT activity positively correlated with GSAO-mediated inhibition of pancreatic tumor angiogenesis and tumor growth in mice. Our findings indicate that pancreatic tumor γGT can be used to deliver a therapeutic to the tumor.
Assuntos
gama-Glutamiltransferase/sangue , gama-Glutamiltransferase/metabolismo , Animais , Arsenicais/química , Arsenicais/metabolismo , Linhagem Celular , Portadores de Fármacos/metabolismo , Feminino , Glutationa/química , Glutationa/metabolismo , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêuticoRESUMO
The use of endosseous dental implants may become unfeasible in the presence of significant maxillary bone atrophy; thus, surgical techniques have been proposed to promote bone regeneration in such cases. However, such techniques are complex and may expose the patient to complications. Subperiosteal implants, being placed between the periosteum and the residual alveolar bone, are largely independent of bone thickness. Such devices had been abandoned due to the complexity of positioning and adaptation to the recipient bone site, but are nowadays witnessing an era of revival following the introduction of new acquisition procedures, new materials, and innovative manufacturing methods. We have analyzed the changes induced in gene and protein expression in C-12720 human osteoblasts by differently surface-modified TiO2 materials to verify their ability to promote bone formation. The TiO2 materials tested were (i) raw machined, (ii) electropolished with acid mixture, (iii) sand-blasted + acid-etched, (iv) AlTiColorTM surface, and (v) anodized. All five surfaces efficiently stimulated the expression of markers of osteoblastic differentiation, adhesion, and osteogenesis, such as RUNX2, osteocalcin, osterix, N-cadherin, ß-catenin, and osteoprotegerin, while cell viability/proliferation was unaffected. Collectively, our observations document that presently available TiO2 materials are well suited for the manufacturing of modern subperiosteal implants.
RESUMO
Glutathione transferase omega-1-1 (GSTO1-1) is a member of the glutathione transferase superfamily (GSTs) involved in the modulation of cell survival, proliferation and metabolism. Increased levels of GSTO1-1 have been associated with cancer progression and chemoresistance in different types of cancer cells, possibly supported by the post-traslational regulation of some major prosurvival pathways regulated by the enzyme. Our data demonstrate for the first time that GSTO1-1 can be released by cancer cells through the exosomal route and transferred to GSTO1-1 knock-out cells, this resulting in an increased resistance against cisplatin toxicity in recipient cells. The use of the exosomal route to transfer the regulatory competences of GSTO1-1 could be a further element supporting its role in neoplastic progression.
RESUMO
Cystic fibrosis is a lethal autosomal recessive condition caused by a defect of the transmembrane conductance regulator gene that has a key role in cell homeostasis. A dysfunctional cystic fibrosis transmembrane conductance regulator impairs the efflux of cell anions such as chloride and bicarbonate, and also that of other solutes such as reduced glutathione. This defect produces an increased viscosity of secretions together with other metabolic defects of epithelia that ultimately promote the obstruction and fibrosis of organs. Recurrent pulmonary infections and respiratory dysfunction are main clinical consequences of these pathogenetic events, followed by pancreatic and liver insufficiency, diabetes, protein-energy malnutrition, etc. This complex comorbidity is associated with the extensive injury of different biomolecular targets by reactive oxygen species, which is the biochemical hallmark of oxidative stress. These biological lesions are particularly pronounced in the lung, in which the extent of oxidative markers parallels that of inflammatory markers between chronic events and acute exacerbations along the progression of the disease. Herein, an abnormal flux of reactive oxygen species is present by the sustained activation of neutrophils and other cystic fibrosis-derived defects in the homeostatic processes of pulmonary epithelia and lining fluids. A sub-optimal antioxidant protection is believed to represent a main contributor to oxidative stress and to the poor control of immuno-inflammatory pathways in these patients. Observed defects include an impaired reduced glutathione metabolism and lowered intake and absorption of fat-soluble antioxidants (vitamin E, carotenoids, coenzyme Q-10, some polyunsaturated fatty acids, etc.) and oligoelements (such as Se, Cu and Zn) that are involved in reactive oxygen species detoxification by means of enzymatic defenses. Oral supplements and aerosolized formulations of thiols have been used in the antioxidant therapy of this inherited disease with the main aim of reducing the extent of oxidative lesions and the rate of lung deterioration. Despite positive effects on laboratory end points, poor evidence was obtained on the side of clinical outcome so far. These aspects examined in this critical review of the literature clearly suggest that further and more rigorous trials are needed together with new generations of pharmacological tools to a more effective antioxidant and anti-inflammatory therapy of cystic fibrosis patients. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Assuntos
Antioxidantes/uso terapêutico , Fibrose Cística/tratamento farmacológico , Estresse Oxidativo , Fibrose Cística/metabolismo , Humanos , Inflamação/tratamento farmacológicoRESUMO
BACKGROUND: The number of individuals suffering from chronic kidney disease (CKD) is increasing. Therefore, early identification of modifiable predictors of CKD is highly desirable. Previous studies suggest an association between body mass index (BMI), metabolic factors and CKD. METHODS: Data of 241 high risk patients with information on renal function and albuminuria from the Renal Disease in Vorarlberg (RENVOR) study (2010-2011) were linked with long-term measurements of metabolic factors in the same patients from the population-based Vorarlberg Health Monitoring & Prevention Program (VHM&PP) cohort study (1988-2005). Actual estimated glomerular filtration rate (eGFR) and urinary albumin creatinine ratio (ACR) were determined. BMI, blood pressure, fasting glucose, total cholesterol, triglycerides and Gamma-glutamyltransferase (GGT) were available from previous health examinations performed up to 25 years ago. Linear regression models were applied to identify predictors of current renal function. RESULTS: At all-time points BMI was significantly inversely associated with actual eGFR and positively with actual albuminuria in men, but not in women. Serum GGT and triglycerides were significantly positively associated with albuminuria in men at all-time points. Fasting glucose levels more than 20 years earlier were associated with increased albuminuria in women and reduced eGFR in men, whereas at later time points it was associated with albuminuria in men. CONCLUSIONS: BMI, serum GGT, and triglycerides are long-term predictors of renal function in men. In women however, anthropometric and metabolic parameters seem to be less predictive of eGFR and albuminuria.
Assuntos
Albuminúria/metabolismo , Índice de Massa Corporal , Taxa de Filtração Glomerular/fisiologia , Vigilância da População , Insuficiência Renal Crônica/metabolismo , Idoso , Albuminúria/diagnóstico , Estudos de Coortes , Estudos Transversais , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Vigilância da População/métodos , Valor Preditivo dos Testes , Insuficiência Renal Crônica/diagnóstico , Fatores de RiscoRESUMO
Ferroptosis is a form of regulated cell death (RCD) characterized by intracellular iron ion accumulation and reactive oxygen species (ROS)-induced lipid peroxidation. Ferroptosis in cancer and ferroptosis-related anticancer drugs have recently gained interest in the field of cancer treatment. Boron is an essential trace element playing an important role in several biological processes. Recent studies have described contrasting effects of boric acid (BA) in cancer cells, ranging from protective/mitogenic to damaging/antiproliferative. Interestingly, boron has been shown to interfere with critical factors involved in ferroptosis-intracellular glutathione and lipid peroxidation in the first place. Thus, the present study was aimed to verify the ability of boron to modulate the ferroptotic process in HepG2 cells, a model of hepatocellular carcinoma. Our results indicate that-when used at high, pharmacological concentrations-BA can increase intracellular ROS, glutathione, and TBARS levels, and enhance ferroptosis induced by RSL3 and erastin. Also, high BA concentrations can directly induce ferroptosis, and such BA-induced ferroptosis can add to the cytotoxic effects of anticancer drugs sorafenib, doxorubicin and cisplatin. These observations suggest that BA could be exploited as a chemo-sensitizer agent in order to overcome cancer drug resistance in selected conditions. However, the possibility of reaching suitably high concentrations of BA in the tumor microenvironment will need to be further investigated.
Assuntos
Antineoplásicos , Ferroptose , Neoplasias Hepáticas , Humanos , Morte Celular , Espécies Reativas de Oxigênio/metabolismo , Boro/farmacologia , Boro/uso terapêutico , Peroxidação de Lipídeos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Glutationa/metabolismo , Microambiente TumoralRESUMO
Boric acid (BA) is the dominant form of boron in plasma, playing a role in different physiological mechanisms such as cell replication. Toxic effects have been reported, both for high doses of boron and its deficiency. Contrasting results were, however, reported about the cytotoxicity of pharmacological BA concentrations on cancer cells. The aim of this review is to briefly summarize the main findings in the field ranging from the proposed mechanisms of BA uptake and actions to its effects on cancer cells.
RESUMO
INTRODUCTION: Titanium alloys currently are the most used material for the manufacture of dental endosseous implants. However, in partially or totally edentulous patients, varying degrees of maxillary bone resorption usually occur, making the application of these devices difficult or even impossible. In these cases, a suitable alternative is offered by subperiosteal implants, whose use is undergoing a revival of interest following the introduction of novel, computer-assisted manufacturing techniques. Several procedures have been developed for the modification of titanium surfaces so to improve their biocompatibility and integration with bone. Information is, however, still incomplete as far as the most convenient surface modifications to apply with subperiosteal implants, in which an integration with soft mucosal tissues is just as important. OBJECTIVES: The present study aimed at evaluating whether different treatments of titanium surfaces can produce different effects on the viability, attachment, and differentiation of gingival fibroblasts, i.e., the cell type mainly involved in osteointegration as well as the healing of soft tissues injured by surgical procedures, in order to verify whether any of the treatments are preferable under these respects. METHODOLOGY: The human immortalized gingival fibroblast (CRL-4061 line) were cultured in the presence of titanium specimens previously treated with five different procedures for surface modification: (i) raw machined (Ti-1); (ii) electropolished (Ti-2); (iii) sand-blasted acid-etched (Ti-3); (iv) Al Ti Color™ proprietary procedure (Ti-4); and (v) anodized (Ti-5). At different times of incubation, viability and proliferation of cells, was determined along with the changes in the expression patterns of ECM-related genes involved in fibroblast attachment and differentiation: vinculin, fibronectin, collagen type I-alpha 1 chain, focal adhesion kinase, integrin ß-1, and N-cadherin. Three different experiments were carried out for each experimental point. The release from fibroblasts of endothelin-1 was also analyzed as a marker of inflammatory response. The proliferation and migration of fibroblasts were evaluated by scratch tests. RESULTS: None of the five types of titanium surface tested significantly affected the fibroblasts' viability and proliferation. The release of endothelin-1 was also not significantly affected by any of the specimens. On the other hand, all titanium specimens significantly stimulated the expression of ECM-related genes at varying degrees. The proliferation and migration abilities of fibroblasts were also significantly stimulated by all types of titanium surface, with a higher-to-lower efficiency in the order: Ti-3 > Ti-4 > Ti-5 > Ti-2 > Ti-1, thus identifying sandblasting acid-etching as the most convenient treatment. CONCLUSIONS: Our observations suggest that the titanium alloys used for manufacturing subperiosteal dental implants do not produce cytotoxic or proinflammatory effects on gingival fibroblasts, and that sandblasting acid-etching may be the surface treatment of choice as to stimulate the differentiation of gingival fibroblasts in the direction of attachment and migration, i.e., the features allegedly associated with a more efficient implant osteointegration, wound healing, and connective tissue seal formation.
RESUMO
BACKGROUND: Serum gamma-glutamyltransferase (GGT) activity is a sensitive but non-specific marker of non-alcoholic fatty liver disease (NAFLD). Recently, four GGT fractions (big-, medium-, small-, free-GGT) were described in humans. AIM: We aimed to investigate whether a specific GGT fraction pattern is associated with NAFLD. METHODS: Gamma-glutamyltransferase fractions were determined in patients with NAFLD (n = 90), and compared with those in control subjects (n = 70), and chronic hepatitis C (CHC, n = 45) age and gender matched. RESULTS: Total GGT was elevated in NAFLD as compared to controls (median, 25°-75° percentile: 39.4, 20.0-82.0 U/L vs. 18.4, 13.2-24.9 U/L respectively, P < 0.001). All fractions were higher in NAFLD than in controls (P < 0.001). The b-GGT showed the highest diagnostic accuracy for NAFLD diagnosis [area under ROC curve (ROC-AUC): 0.85; cut-off 2.6 U/L, sensitivity 74%, specificity 81%]. Also subjects with CHC showed increased GGT (41.5, 21.9-84.5 U/L, P < 0.001 vs. controls, P = n.s. vs. NAFLD), as well as m-, s-, and f-GGT, while b-GGT did not show any significant increase (P = n.s. vs. HS, P < 0.001 vs. NAFLD). In subjects with CHC, s-GGT showed the best diagnostic value (ROC-AUC: 0.853; cut-off 14.1 U/L, sensitivity 73%, specificity 90%). Serum GGT did not show any value in the differential diagnosis between NAFLD and CHC (ROC-AUC 0.507, P = n.s.), while b-GGT/s-GGT ratio showed the highest diagnostic accuracy for distinguishing NAFLD and CHC (ROC-AUC: 0.93; cut-off value 0.16, sensitivity 82%, specificity 90%). CONCLUSIONS: b-GGT increases in NAFLD, but not in CHC. GGT fraction analysis might help in improving the sensitivity and specificity of the diagnosis of NAFLD and other liver dysfunctions.
Assuntos
Fígado Gorduroso/diagnóstico , Hepatite C Crônica/sangue , gama-Glutamiltransferase/sangue , Idoso , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Estudos de Casos e Controles , Fígado Gorduroso/sangue , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica , Valor Preditivo dos Testes , Curva ROCRESUMO
Plasma samples from human cord blood, and fetuses, newborns, and adults of different mammalians species were analyzed by gel-filtration chromatography, to ascertain whether gamma-glutamyltransferase (GGT) fractions reflect liver maturation. Human cord blood plasma showed higher b-, m-, and s-GGT fraction as compared to adult women. In rat and mouse fetuses and in newborns, b-GGT was the most abundant fraction. As in adult humans, in adult rats, mice, rabbits, sheep, and mini pigs, f-GGT was the most abundant fraction. GGT fractions are a common feature of all mammalian species tested. Their pattern changes seem to reflect liver postnatal maturation, function.
Assuntos
Sangue Fetal/enzimologia , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , gama-Glutamiltransferase/sangue , Adulto , Fatores Etários , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Cromatografia em Gel/métodos , Feminino , Humanos , Recém-Nascido , Camundongos , Coelhos , Ratos , Ovinos , Suínos , gama-Glutamiltransferase/isolamento & purificaçãoRESUMO
INTRODUCTION: The UVC-irradiation ("UV-photofunctionalization") of titanium dental implants has proved to be capable of removing carbon contamination and restoring the ability of titanium surfaces to attract cells involved in the process of osteointegration, thus significantly enhancing the biocompatibility of implants and favoring the post-operative healing process. To what extent the effect of UVC irradiation is dependent on the type or the topography of titanium used, is still not sufficiently established. OBJECTIVE: The present study was aimed at analyzing the effects of UV-photofunctionalization on the TiO2 topography, as well as on the gene expression patterns and the biological activity of osteogenic cells, i.e., osteogenic precursors cultured in vitro in the presence of different titanium specimens. METHODOLOGY: The analysis of the surface roughness was performed by atomic force microscopy (AFM) on machined surface grade 2, and sand-blasted/acid-etched surface grades 2 and 4 titanium specimens. The expression of the genes related with the process of healing and osteogenesis was studied in the MC3T3-E1 pre-osteoblastic murine cells, as well as in MSC murine stem cells, before and after exposure to differently treated TiO2 surfaces. RESULTS: The AFM determinations showed that the surface topographies of titanium after the sand-blasting and acid-etching procedures, look very similar, independently of the grade of titanium. The UVC-irradiation of the TiO2 surface was found to induce an increase in the cell survival, attachment and proliferation, which was positively correlated with an increased expression of the osteogenesis-related genes Runx2 and alkaline phosphatase (ALP). CONCLUSION: Overall, our findings expand and further support the current view that UV-photofunctionalization can indeed restore biocompatibility and osteointegration of TiO2 implants, and suggest that this at least in part occurs through a stimulation of the osteogenic differentiation of the precursor cells.
RESUMO
Cisplatin (CDDP) is currently employed for the treatment of several solid tumors, but cellular heterogeneity and the onset of drug resistance dictate that suitable biomarkers of CDDP sensitivity are established. Studies on triple-negative breast cancer (TNBC) have recently confirmed the involvement of gamma-glutamyltransferase 1 (GGT1), whose enzyme activity expressed at the cell surface favors the cellular resupply of antioxidant glutathione (GSH) thus offering cancer cells protection against the prooxidant effects of CDDP. However, an additional well-established mechanism depends on GGT1-mediated matabolism of extracellular GSH. It was in fact shown that glycyl-cysteine - the dipeptide originated by GGT1-mediated GSH metabolism at the cell surface - can promptly form adducts with exogenous CDDP, thus hindering its access to the cell, interactions with DNA and overall cytotoxicity. Both mechanisms: mainainance of intracellular GSH levels plus extracellular CDDP detoxication are likely concurring to determine GGT1-dependent CDDP resistance.
RESUMO
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of "foam cells" within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
RESUMO
BACKGROUND: Glutathione S-transferase omega-1 (GSTO1-1) is a cytosolic enzyme that modulates the S-thiolation status of intracellular factors involved in cancer cell survival or in the inflammatory response. Studies focusing on chronic obstructive pulmonary disease (COPD) have demonstrated that GSTO1-1 is detectable in alveolar macrophages, airway epithelium and in the extracellular compartment, where its functions have not been completely understood. Moreover GSTO1-1 polymorphisms have been associated with an increased risk to develop COPD. Against this background, the aim of this study was to evaluate GSTO1-1 levels and its polymorphisms in cystic fibrosis (CF) patients. METHODS: Clinical samples from a previous study published by our groups were analyzed for GSTO1-1 levels and polymorphisms. For comparison, a model of lung inflammation in CFTR-knock out mice was also used. RESULTS: Our data document that soluble GSTO1-1 can be found in the airways of CF patients and correlates with inflammatory parameters such as neutrophilic elastase and the chemokine IL-8. A negative correlation was found between GSTO1-1 levels and the spirometric parameter FEV1 and the FEV1/FVC ratio. Additionally, the A140D polymorphism of GSTO1-1 was associated with lower levels of the antiinflammatory mediators PGE2 and 15(S)-HETE, and with lower values of the FEV1/FVC ratio in CF subjects with the homozygous CFTR ΔF508 mutation. CONCLUSIONS: Our data suggest that extracellular GSTO1-1 and its polymorphysms could have a biological and clinical significance in CF. Pathophysiological functions of GSTOs are far from being completely understood, and more studies are required to understand the role(s) of extracellular GSTO1-1 in inflamed tissues.