Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955041

RESUMO

Chromium contamination from abandoned industrial sites and inadequately managed waste disposal areas poses substantial environmental threat. Microbially induced carbonate precipitation (MICP) has shown promising, eco-friendly solution to remediate Cr(VI) and divalent heavy metals. In this study, MICP was carried out for chromium immobilization by an ureolytic bacterium Arthrobacter creatinolyticus which is capable of reducing Cr(VI) to less toxic Cr(III) via extracellular polymeric substances (EPS) production. The efficacy of EPS driven reduction was confirmed by cellular fraction analysis. MICP carried out in aqueous solution with 100 ppm of Cr(VI) co-precipitated 82.21% of chromium with CaCO3 and the co-precipitation is positively correlated with reduction of Cr(VI). The organism was utilized to remediate chromium spiked sand and found that MICP treatment decreased the exchangeable fraction of chromium to 0.54 ±â€¯0.11% and increased the carbonate bound fraction to 26.1 ±â€¯1.15% compared to control. XRD and SEM analysis revealed that Cr(III) produced during reduction, influenced the polymorph selection of vaterite during precipitation. Evaluation of MICP to remediate Cr polluted soil sample collected from Ranipet, Tamil Nadu also showed effective immobilization of chromium. Thus, A. creatinolyticus proves to be viable option for encapsulating chromium contaminated soil via MICP process, and effectively mitigating the infiltration of Cr(VI) into groundwater and adjacent water bodies.


Assuntos
Arthrobacter , Carbonatos , Cromo , Arthrobacter/metabolismo , Cromo/química , Carbonatos/química , Poluentes do Solo/metabolismo , Poluentes do Solo/química , Carbonato de Cálcio/química
2.
Phytother Res ; 37(1): 329-341, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36086831

RESUMO

Obesity is a multi-factorial metabolic syndrome that increases the risk of cardiovascular diseases, diabetes, and cancer. We recently demonstrated the antiadipogenic efficacy of lutein using a 3 T3-L1 cell culture model. This study aimed to examine the antiobesity efficacy of lutein on high-fat (60% kcal fat) diet-induced C57BL/6J obese mice model. Lutein (300 and 500 µM), Orlistat (30 mg/kg body weight - positive control), and its combination (orlistat, 15 mg/kg body weight+lutein, 300 µM) were administered in high-fat diet (HFD)-fed mice every other day for 24 weeks. The effect on serum and hepatic lipid parameters was estimated using biochemical assay kits. The adipose tissue expression of adipocyte differentiation markers at gene and protein levels was analyzed by RT-PCR and western blotting, respectively. The results showed that lutein administration and drug significantly reduced epididymal and abdominal adipose tissue weights. Further, lutein reduced the serum cholesterol and LDL-C concentration compared to the HFD group. The HFD-induced elevation in the hepatic triglycerides and cholesterol levels were significantly blocked by lutein and its combination with the drug. Similarly, lutein and its drug combination efficiently lowered the HFD-mediated elevated blood glucose levels. Lutein downregulated the expression of CEBP-α, PPAR-γ, and FAS in the epididymal adipose tissue. Thus, supplementation of lutein may control diet-induced obesity and associated complications in the human population.


Assuntos
Fármacos Antiobesidade , Fígado Gorduroso , Intolerância à Glucose , Humanos , Animais , Camundongos , Luteína/farmacologia , Luteína/metabolismo , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/tratamento farmacológico , Orlistate/metabolismo , Orlistate/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Fígado Gorduroso/tratamento farmacológico , Fígado , Tecido Adiposo , Fármacos Antiobesidade/farmacologia , Colesterol
3.
Diabet Med ; 39(2): e14713, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614244

RESUMO

AIMS: Diabetic population have a twofold to threefold increased risk of developing liver cancer, and hyperglycaemia is a prime causative factor that propends the tumour cells to undergo aggressive metabolic growth. In this study, we aimed to examine the molecular mechanism by which lutein inhibits hyperglycaemia-induced human hepatocarcinoma (HepG2) cell proliferation. METHODS: The effect of lutein on high glucose-induced proliferation was measured using the WST-1 reagent. Its effect on intracellular reactive oxygen species (ROS) levels was measured by DCF assay. The effect on the expression of antioxidant enzymes, cell cycle regulatory proteins and intracellular protein kinases was analysed by western blotting. The modulatory effect of lutein on different phases of the cell cycle was analysed by flow cytometry. RESULTS: The data showed that lutein at 5 µM concentration significantly blocked glucose-promoted HepG2 cell proliferation. Suppression of high glucose-induced cell proliferation by lutein was not associated with apoptosis induction, but it was linked with inhibition of hyperglycaemia-mediated elevated ROS and upregulated expression of high glucose-mediated repressed heme oxygenase 1 (HO1). Furthermore, G2/M phase cell cycle arrest and associated phosphorylation of Cdk1 and P53 were found to be linked with suppressed hyperglycaemia-mediated cell proliferation by lutein. In addition, lutein inhibited hyperglycaemia-induced activation of P38 which relates to high glucose-induced ROS-mediated growth suppression and modulated the phosphorylation of Erk, JNK and Akt in hyperglycaemic HepG2 cells. CONCLUSION: Our findings portray that sufficient intake of lutein may offer a negative impact on diabetes-associated tumour growth.


Assuntos
Apoptose , Carcinoma Hepatocelular/genética , Hiperglicemia/complicações , Luteína/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Xantofilas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Proliferação de Células , Células Hep G2 , Humanos , Hiperglicemia/genética , Hiperglicemia/metabolismo , Neoplasias Hepáticas , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese
4.
J Cell Physiol ; 236(3): 1798-1809, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32710479

RESUMO

Reduced risk of breast cancer upon intake of lutein-rich food supplements creates an interest to investigate the molecular mechanism underlying the growth inhibitory potential of lutein in MCF-7 and MDA-MB-231 cells. Lutein purified from Spinacia oleracea was identified by high-performance liquid chromatography and liquid chromatography-mass spectrometry. The cell viability was measured by water-soluble tetrazolium-1 assay. The intracellular reactive oxygen species level was examined by 2',7'-dichlorofluorescein assay. The protein expression of the markers of antioxidant defense, cell survival, and apoptosis was analyzed by western blot analysis. The induction of apoptosis by lutein was measured by 4',6-diamidino-2-phenylindole staining and caspase-3 activity assay. The purified lutein inhibited the viability of MCF-7 and MDA-MB-231 cells. The growth inhibitory effect of lutein was associated with suppressed protein expression of superoxide dismutase-2 and heme oxygenase-1, and its transcription factor nuclear factor erythroid 2-related factor-2. Lutein treatment subsequently blocked the expression of intracellular cell survival proteins, phosphorylated protein kinase B, phosphorylated extracellular-regulated kinase 1/2, and nuclear factor-kB. Suppression of antioxidant defense and cell survival markers by lutein was further linked to apoptosis induction with elevated caspase-3 activity and downregulated expression of Bcl-2 and poly-ADP ribose polymerase. Our results emphasize a significant role of lutein as an effective inhibitor of human breast cancer cell growth that activates cell death partly through the modulation of antioxidant defense response-linked cell survival signaling markers.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Luteína/farmacologia , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Luteína/isolamento & purificação , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
5.
Nutr Cancer ; 73(2): 307-317, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32238022

RESUMO

The marine ecosystem is considered as a treasure of numerous novel biologically active molecules. We investigated the anticancer potential of the phenolic extract of Halophila ovalis in breast cancer (MCF-7) cells and characterized the possible underlying molecular mechanism. The phenolic extract (5 µl) of H. ovalis effectively inhibited the growth of MCF-7 cells. The results of DAPI staining indicated that this phenolic extract potently induces apoptosis in MCF-7 cells which was observed by increased chromatin condensation in the treated cells. An increased expression of the active fragments of an executioner caspase, caspase 3 in phenolic extract-treated MCF-7 cells further confirms this apoptosis induction. In consequence, the loss of mitochondrial membrane potential was noticed in treated cells. The protein expression analyzes show decreased expression of the anti-apoptotic protein, Bcl-2, and DNA repair enzyme, PARP in treated cells indicating the probable molecular targets of apoptosis. Further, the phenolic extract of H. ovalis blocked the antioxidant defense system in MCF-7 cells by down-regulating the protein expression of a major transcription factor, Nrf-2 and regulatory antioxidant enzymes, SOD-2 and HO-1. These results show the presence of chemopreventive compound(s) in the phenolic extract, which offers a platform for future studies to identify the active principles.


Assuntos
Neoplasias da Mama , Apoptose , Neoplasias da Mama/tratamento farmacológico , Caspases , Ecossistema , Feminino , Humanos , Células MCF-7
6.
Mol Biol Rep ; 48(10): 6923-6934, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34487292

RESUMO

BACKGROUND: The liver has a solid inbuilt antioxidant defense system to regulate oxidative stress. However, exposure to an excessive level of ROS causes liver injury. This study examined the cytoprotective effect of neoxanthin, a xanthophyll antioxidant molecule isolated from Solanum trilobatum in stress-induced HepG2 cells. METHODS AND RESULTS: The cytotoxic effect of H2O2 and cytoprotective potential of ß-carotene, lutein, and neoxanthin was analyzed by WST-1 assay. The intracellular ROS level and mitochondrial membrane potential (MMP) were measured using DCFH-DA (2', 7'-dichlorofluorescin diacetate) and JC-10 MMP assay. The expression of anti-oxidant and apoptotic markers was measured by western blot analysis. Neoxanthin pretreatment exhibited better protection than ß-carotene and lutein against cell death caused by H2O2. It significantly arrested H2O2-mediated elevation of intracellular ROS levels and protected MMP. The intracellular antioxidant enzymes HO-1 and SOD-2 were upregulated by neoxanthin pretreatment. Neoxanthin also activated the protein expression of redox-sensitive transactivation factors, Nrf2 and NF-kB. The cytoprotective effect of neoxanthin was associated with increased expression of the anti-apoptotic protein, Bcl-2 and decreased pro-apoptotic protein Bax. CONCLUSIONS: For the first time, our results demonstrate that neoxanthin offers adequate protection against stress-mediated cytotoxicity in hepatocytes by activating the intracellular antioxidant defense system and blocking apoptosis.


Assuntos
Antioxidantes/metabolismo , Apoptose , Peróxido de Hidrogênio/toxicidade , Transdução de Sinais , Xantofilas/farmacologia , Apoptose/efeitos dos fármacos , Carotenoides/farmacologia , Citoproteção/efeitos dos fármacos , Células Hep G2 , Humanos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Xantofilas/isolamento & purificação
7.
Mol Biol Rep ; 46(1): 1263-1274, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30628023

RESUMO

DMEM/F12 nutrient mixture, a recommended media for ARPE-19 culture, contains glucose concentration of 17.5 mM. But, several recent studies employed normal glucose media (5.5 mM) that was shown to affect the growth and function of ARPE-19 cells. Here, we set a protocol to study the effect of hyperglycemia on intracellular oxidative stress and redox status in ARPE-19 using DMEM/F12 as control. The WST-1 assay was performed to analyze the viability of ARPE-19 upon glucose treatment. The intracellular oxidative stress was measured by a dichlorofluorescein assay. The mitochondrial membrane potential (MMP) was monitored by using a JC-10 MMP assay kit. The expression of antioxidant marker proteins was analyzed by western blotting. Exogenous addition of glucose (7.5 and 12.5 mM) for 24 and 48 h did not change the viability and morphology of ARPE-19 cells. Hyperglycemia increased intracellular ROS level and decreased MMP in a dose-dependent manner. High-glucose treatment for 24 h down-regulated the protein expression of redox-specific transcription factors Nrf-2, XBP-1 and NF-κB, and subsequently decreased the expression of HO-1, catalase, and SOD-2. This study offers baseline information for the subsequent use of DMEM/F12 nutrient mixture to study glucose-mediated changes in intracellular oxidative stress and redox status of ARPE-19 without affecting its basic functions.


Assuntos
Hiperglicemia/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/fisiologia , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Catalase/metabolismo , Técnicas de Cultura de Células/métodos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Células Epiteliais/metabolismo , Humanos , Hiperglicemia/fisiopatologia , NF-kappa B/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina , Transdução de Sinais/efeitos dos fármacos
8.
Int J Biol Macromol ; 274(Pt 2): 133389, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38925203

RESUMO

Collagen fibrils serve as the building blocks of the extracellular matrix, providing a resilient and structural framework for tissues. However, the bundling of collagen fibrils is of paramount importance in maintaining the structural integrity and functionality of various tissues in the human body. In this scenario, there is limited exploration of molecules that promote the bundling of collagen fibrils. Investigating the interactions of well-known carotenoids, commonly associated with ocular health, particularly in the retina, with collagen presents a novel and significant area of study. Here, we studied the influence of lutein, a well-known carotenoid present in many plant tissues and has several biological properties, on the structure, thermal stability, self-assembly, and fibrillation of collagen. Fibrillation kinetics and electron microscopic analyses indicated that lutein did not interfere with fibrillation process of collagen, whereas it enhances the lateral fusion of collagen fibrils leading to the formation of compact bundles of thick fibrils under physiological conditions. The hydrophobic and hydrogen bonding interactions between lutein and collagen fibrils are most likely the cause of the bundling of the fibrils. This study establishes the first investigation of collagen-carotenoid interactions, showcasing the unique property of lutein in bundling collagen fibrils, which may find potential application in tissue engineering.

9.
J Food Biochem ; 46(9): e14211, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488719

RESUMO

An absolute interlinks between inflammation and obesity with scarce investigations on the role of lutein in inflammation-induced obesity motivated us to explore the protective mechanism of lutein on adipogenesis-mediated inflammation in vitro by culturing RAW264.7 macrophages in adipocyte conditioned medium. The RAW264 macrophage cells were cultured with adipocyte-conditioned media, and the potency of lutein on the expression of adipocyte inflammation-associated protein markers (IL-1ß, MCP-1, TNF-α, IL-6, NF-κB, and IKKα/ß) were analyzed by western blotting. The data revealed that lutein effectively reduces the protein levels of major inflammatory markers such as NF-κB, IL-1ß, MCP-1, and TNF-α in differentiated adipocytes. Interestingly, lutein hampered inflammation in the RAW264 cells that were cultured in adipocyte-conditioned media by lowering the protein expression of IL-1ß, MCP-1, and TNF-α. The blockage of inflammation by lutein in both differentiated adipocytes, and adipogenesis-induced macrophages is associated with suppression of IKK α/ß phosphorylation. These data suggest that lutein potentially alters adipocyte differentiation-mediated inflammation by regulating the NF-κB signaling pathway. Thus, lutein could be utilized as a potent nutraceutical agent in the management of obesity and associated inflammation. PRACTICAL APPLICATIONS: Lutein isolated from a dietary source exhibited an inhibitory effect in adipogenesis-induced inflammations. The findings of this study authenticate the diversified prospective of lutein in regulating obesity and other inflammation-related diseases. Thus, it is understood that continuous intake of lutein-rich food or dietary intervention of lutein may reduce the risk of developing obesity.


Assuntos
Adipogenia , Luteína , Animais , Meios de Cultivo Condicionados , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Luteína/farmacologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Obesidade , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética
10.
Eur J Pharmacol ; 914: 174663, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34861209

RESUMO

We have earlier demonstrated that lutein effectively prevents hyperglycemia generated sustained oxidative stress in ARPE-19 cells by activating Nrf2 (nuclear factor erythroid 2-related factor 2) signaling. Since evidence portrays an intricate connection between ER (endoplasmic reticulum) stress and hyperglycemia-mediated oxidative stress, we aimed to explore the protective mechanism of lutein on hyperglycemia-induced ER stress in ARPE-19 cells. To determine the effect of lutein, we probed three major downstream branches of unfolded protein response (UPR) signaling pathways using western blot, immunofluorescent and RT-PCR techniques. The data showed a reduction (38%) in protein expression of an imperative ER chaperon, BiP (binding immunoglobulin protein), in glucose-treated ARPE-19 cells. At the same time, lutein pretreatment blocked this glucose-mediated effect, leading to a significant increase in BiP expression. Lutein promoted the phosphorylation of IRE1 (inositol requiring enzyme 1) and subsequent splicing of XBP1 (X-box binding protein 1), leading to enhanced nuclear translocation. Likewise, lutein activated the expression and translocation of transcription factors, ATF6 (activating transcription factor 6) and ATF4 (activating transcription factor 4) suppressed by hyperglycemia. Lutein also increased CHOP (C/EBP-homologous protein) levels in ARPE-19 cultured under high glucose conditions. The mRNA expression study showed that lutein pretreatment upregulates downstream UPR genes HRD1 (ERAD-associated E3 ubiquitin-protein ligase HRD1), p58IPK (protein kinase inhibitor p58) compared to high glucose treatment alone. From our study, it is clear that lutein show protection against hyperglycemia-mediated ER stress in ARPE-19 cells by activating IRE1-XBP1, ATF6, and ATF4 pathways and their downstream activators. Thus, lutein may have the pharmacological potential for protection against widespread disease conditions of ER stress.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperglicemia/metabolismo , Luteína/farmacologia , Transdução de Sinais/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 4 Ativador da Transcrição/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Fatores Biológicos/farmacologia , Linhagem Celular , Endorribonucleases/metabolismo , Humanos , Hiperglicemia/complicações , Macula Lutea/metabolismo , Macula Lutea/patologia , Estresse Oxidativo , Substâncias Protetoras/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
11.
Chemosphere ; 308(Pt 3): 136533, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36176233

RESUMO

Biocementation via enzyme induced carbonate precipitation (EICP) is an emerging ground improvement technique that utilizes urease for calcium carbonate precipitation. Usage of expensive laboratory grade chemicals in EICP hinders its implementation at field level applications. In this study, the feasibility of utilizing solid wastes generated from leather industry was investigated for EICP process. Initially, the proteinaceous fleshing waste was used as nitrogen source for production of an extracellular urease from Arthrobacter creatinolyticus MTCC 5604 followed by its subsequent use in EICP with suspended solids of tannery lime liquor, as alternative calcium source. The calcium ion solution was prepared by treating suspended solids of lime liquor with 1 N HCl. The EICP was optimum with 1000 U of urease, 1.0 M urea and 1.0 M CaCl2.2H2O for test tube experiments. Sand solidification experiments under optimal conditions with five times addition of cementation solution yielded a maximum unconfined compressive strength (UCS) of 810 kPa with laboratory grade CaCl2.2H2O and 780 kPa with calcium from lime liquor. The crystalline phases and morphology of the CaCO3 precipitate were analyzed by XRD, FTIR and SEM-EDX. The results showed the formation of more stable calcite in EICP with calcium obtained from lime liquor, while calcite and vaterite polymorphs were obtained with CaCl2.2H2O. Utilization of fleshing waste and lime liquor in EICP could reduce the pollution load and sludge formation that are generated during the pre-tanning operations of leather manufacturing. The results indicated the viability of process to achieve cost effective and sustainable biocementation for large scale applications.


Assuntos
Resíduos Sólidos , Urease , Cálcio , Carbonato de Cálcio/química , Cloreto de Cálcio , Compostos de Cálcio , Nitrogênio , Óxidos , Areia , Esgotos , Ureia
12.
Artigo em Inglês | MEDLINE | ID: mdl-32920140

RESUMO

A comprehensive molecular mechanistic role of lutein on adipogenesis is not well understood. The present study focused to evaluate the effect of lutein at the early and late phase of adipocyte differentiation in vitro using a 3T3-L1 cell model. The effect of purified carotenoid on the viability of normal and differentiated 3T3-L1 cells was analyzed by WST-1 assay. Oil Red O and Nile red staining were employed to observe lipid droplets in mature adipocytes. The effect of lutein on gene and protein expression of major transcription factors and adipogenic markers was analyzed by RT-PCR and western blotting, respectively. The role of lutein on mitotic clonal expansion was analyzed by flow cytometry. The results showed a significant reduction (p < 0.05) in the accumulation of lipid droplets in lutein-treated (5 µM) cells. Inhibition in lipid accumulation was associated with down-regulated expression of CEBP-α and PPAR-γ at gene and protein levels. Subsequently, lutein repressed gene expression of FAS, FABP4, and SCD1 in mature adipocytes. Interestingly, it blocks the protein expression of CEBP-α and PPAR-γ in the initial stages of adipocyte differentiation. This early-stage inhibition of adipocyte differentiation is linked with repressed phosphorylation AKT and ERK. Further, upregulated cyclin D and down-regulated CDK4 and CDK2 in lutein treated adipocytes enumerate its role in delaying the cell cycle progression at the G0/G1 phase. Our results emphasize that adipogenesis inhibitory efficacy of lutein is potentiated by halting early phase regulators of adipocyte differentiation, which strengthens the competency of lutein besides its inevitable presence in the human body.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Luteína/farmacologia , PPAR gama/genética , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Animais , Proteínas Estimuladoras de Ligação a CCAAT/antagonistas & inibidores , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Ciclina D/genética , Ciclina D/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Dexametasona/farmacologia , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação da Expressão Gênica , Camundongos , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/genética , Transdução de Sinais , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Receptor fas/genética , Receptor fas/metabolismo
13.
J Cell Commun Signal ; 14(2): 207-221, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31820335

RESUMO

Diabetic retinopathy (DR) is a major cause of acquired blindness among working adults. The retinal pigment epithelium (RPE), constitutes an outer blood-retinal barrier, is vastly affected in diabetic humans and animals. Lower levels of lutein in the serum and retina of diabetic population, and beneficial effects of carotenoids supplementation in diabetic retinopathy patients created an interest to examine the protective effect of lutein on hyperglycemia-mediated changes in oxidative stress and antioxidant defense system in ARPE-19 cells. The WST-1 assay was performed to analyze the impact of glucose, and lutein on the viability of ARPE-19. The intracellular oxidative stress was measured by a DCF (dichlorofluorescein) assay, mitochondrial membrane potential (MMP) was monitored using a JC-10 MMP assay kit and GSH level was examined using GSH/GSSG ratio detection kit. The oxidative stress markers, protein carbonyl and malondialdehyde were spectrophotometrically measured using 2,4-dinitrophenylhydrazine and 2-thiobarbituric acid, respectively. The expression of endogenous antioxidant enzymes and regulatory proteins in ARPE-19 was quantified by western blotting. The localization of Nrf2 protein was examined by immunofluorescent staining. The results show that lutein (up to 1.0 µM) did not affect the viability of ARPE-19 grown in both normal and high-glucose conditions. Lutein treatment blocked high glucose-mediated elevation of intracellular ROS, protein carbonyl and malondialdehyde content in ARPE-19 cells. The decreased MMP and GSH levels observed in ARPE-19 grown under high-glucose condition were rescued by lutein treatment. Further, lutein protected high glucose-mediated down-regulation of a redox-sensitive transcription factor, Nrf2, and antioxidant enzymes, SOD2, HO-1, and catalase. This protective effect of lutein was linked with activated nuclear translocation of Nrf2, which was associated with increased activation of regulatory proteins such as Erk and AKT. Our study indicates that improving the concentration of lutein in the retina could protect RPE from diabetes-associated damage.

14.
Biomater Sci ; 8(23): 6773-6785, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33141121

RESUMO

The present work reports a new route to prepare a "smart biomaterial" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. For that, reactive non-proteogenic amino acid 3,4-dihydroxyphenylalanine (DOPA) was genetically introduced into an intrinsic triple-helical hierarchical structure forming protein to initiate hierarchical self-assembly to form a macromolecular structure. The self-assembled scaffold displayed vascular endothelial growth factor mimicking the pro-angiogenic reactive group for repairing and remodeling of damaged tissue cells. We customized the recombinant collagen-like protein (CLP) with DOPA to promote rapid wound healing and cell migrations. Selective incorporation of catechol in variable and C-terminal region of CLP enhanced interaction between inter- and intra-triple-helical collagen molecules that resulted in a structure resembling higher-order native collagen fibril. Turbidity analysis indicated that the triple-helical CLP self-assembled at neutral pH via a catechol intra-crosslinking mechanism. After self-assembly, only DOPA-encoded CLP formed branched filamentous structures suggesting that catechol mediated network coordination. The catechol-encoded CLP also acted as a "smart material" by mimicking long-acting cellular growth factor showing enhanced cell-material interactions by promoting cell proliferation and angiogenesis. It eliminates release rate, stability, and shelf-life of hybrid growth factor conjugated biomaterials. The newly synthesized CLP has the potential to promote accelerated cell migration, pro-angiogenesis, and biocompatibility and could be used in the field of implantable medical devices and tissue engineering.


Assuntos
Di-Hidroxifenilalanina , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular , Materiais Biocompatíveis , Colágeno , Di-Hidroxifenilalanina/farmacologia , Matriz Extracelular , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA