RESUMO
Two main challenges when controlling alien American mink (Neovison vison) in Patagonia are to maximize campaign efficacy and cost-effectiveness and to avoid trapping native species. We designed and tested new variants of collapsible wire box traps, compared the efficacy of a food-based bait and a scent lure and compared catch rates in different seasons of the year. We used the data to model the efficiency rate of the trapping and to determine the trapping effort required to remove 70-90% of the estimated discrete mink population. Between January 2018 and March 2021, we operated 59 trapping transects over 103 three-day trapping periods in southern Chile. Traps were first baited with canned fish, and afterwards with mink anal gland lure. We compared the efficacy of mink capture with that of our previous study. We trapped 196 mink (125 males, 71 females), with most captures in summer. The medium-sized GMV-18 trap caught more male mink, but the more compact GMV-13 caught fewer non-target rodents and no native mammals. The scent lure was more successful than the canned fish when the previous campaign's data were included in the analysis. There was also a significant improvement in the proportion of female mink trapped and reduced labour compared with our previous campaign that used larger traps, fish bait and 400-500 m trap spacings. We caught relatively more females than males after the third night of trapping on a transect. Our data analysis supports the use of the GMV-13 variant of wire cage trap as the best trap size: it is effective on female mink, small, cheap and easy to transport. Combined with mink anal scent lure, it reduces the possibility of trapping native species compared with other traps tested in Chile. As the most efficient method for removing at least 70% of the estimated discrete mink population within the area covered by each trap transect in southern Chile tested to date, we recommend trapping campaigns using GMV-13 during summer, with a 200-m trap spacing, for up to 6 days before moving traps to a new site, with a combination of three days with a female scent gland lure, followed by three days with a male scent gland lure.
RESUMO
Rabies was known to humans as a disease thousands of years ago. In America, insectivorous bats are natural reservoirs of rabies virus. The bat species Tadarida brasiliensis and Lasiurus cinereus, with their respective, host-specific rabies virus variants AgV4 and AgV6, are the principal rabies reservoirs in Chile. However, little is known about the roles of bat species in the ecology and geographic distribution of the virus. This contribution aims to address a series of questions regarding the ecology of rabies transmission in Chile. Analyzing records from 1985-2011 at the Instituto de Salud Pública de Chile (ISP) and using ecological niche modeling, we address these questions to help in understanding rabies-bat ecological dynamics in South America. We found ecological niche identity between both hosts and both viral variants, indicating that niches of all actors in the system are undifferentiated, although the viruses do not necessarily occupy the full geographic distributions of their hosts. Bat species and rabies viruses share similar niches, and our models had significant predictive power even across unsampled regions; results thus suggest that outbreaks may occur under consistent, stable, and predictable circumstances.