Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 793: 148441, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174600

RESUMO

The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron­manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment's pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased >20-fold, reaching concentrations above 50 µg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.


Assuntos
Água Subterrânea , Urânio , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Suécia , Urânio/análise , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 622-623: 203-213, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216463

RESUMO

The performance of double focusing, sector field mass spectrometry (ICP-SFMS) for determination of analytes, including technology critical elements (TCE), at ultra-trace levels in environmental and clinical matrices was critically evaluated. Different configurations of the ICP-SFMS introduction system as well as various sample preparations, pre-concentration and matrix separation methods were employed and compared. Factors affecting detection capabilities and accuracy of data produced (instrumental sensitivity, contamination risks, purity of reagents, spectral interferences, matrix effects, analyte recovery and losses) were discussed. Optimized matrix-specific methods were applied to a range of reference and control materials (riverine, brackish and seawaters; whole blood, serum and urine) as well as tap water and snow samples collected in the area of Luleå city, northern Sweden; brackish and seawater from the Laptev Sea; venous blood samples with a special emphasis on determination of Au, Ag, Ir, Os, Pd, Pt, Re, Rh, Ru, Sb and Te. Even though these low abundant elements are relatively under-documented, the results produced were compared with published data, where available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA