Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 17(1): 351, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784923

RESUMO

BACKGROUND: This study aimed to evaluate the effects of increasing dosages of a commercial product composed by Saccharomyces cerevisiae yeast (YAM), with active metabolites, which are beta glucans, nucleotides, organic acids, polyphenols, amino acids, vitamins and minerals (Original XPCtm, Diamond V, IOWA, USA) added to a commercially available dry cat food. Apparent digestibility of dietary nutrients, fecal microbiota, fecal fermentation products and immunological parameters were evaluated. Twenty-seven healthy cats of mixed sexes, with a mean body weight of 4.19 ± 0.83 kg and a mean age of 9.44 ± 5.35 years were distributed by age in an unbalanced randomized block design, consisting of three experimental treatments: CD (control diet), YAM 0.3 (control diet with 0.3% yeast with active metabolites) and YAM 0.6 (control diet with 0.6% yeast with active metabolites). RESULTS: The inclusion of the additive elevated the apparent digestibility of crude fiber (p = 0.013) and ash (p < 0.001) without interfering feed consumption, fecal production and fecal characteristics. Regarding fermentation products present in the feces, prebiotic inclusion increased lactic acid concentration (p = 0.004) while reducing isovaleric acid (p = 0.014), only in the treatment YAM 0.3. No differences were noticed on biogenic amines (BA), fecal pH, ammonia concentration, total and individuals short-chain fatty acids (SCFA) and total and individuals branched-chain fatty acids (BCFA) (except isovaleric acid in YAM 0.3). As regards to fecal microbiota, prebiotic inclusion has resulted in the reduction of Clostridium perfringens (p = 0.023). No differences were found in the immunological parameters evaluated. CONCLUSION: It can be concluded that the additive, at the levels of inclusion assessed shows prebiotic potential and it has effects on fecal fermentation products and microbiota without interfering on crude protein and dry matter digestibility. More studies evaluating grater inclusion levels of the prebiotic are necessary to determine optimal concentration.


Assuntos
Gatos/fisiologia , Dieta/veterinária , Saccharomyces cerevisiae/química , Ração Animal/análise , Animais , Parede Celular , Digestão , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Masculino , Prebióticos
2.
Metabolites ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36676969

RESUMO

Utilizing metabolomics, a tool for measuring and characterizing low-molecular-weight substances (LMWs), to identify eventual changes in response to dietary intervention is novel in cats with chronic kidney disease (CKD), a condition characterized by retention of uremic solutes. This study aims to assess the serum metabolomic profile of cats in early stages of CKD and to compare the serum metabolomic of CKD cats after 60 days of a renal diet to evaluate the effect of dietary intervention on these metabolites. Twenty-five domestic cats were included in the study. Fifteen cats with CKD stages 1 (n = 6) and 2 (n = 9) according to the International Renal Interest Society (IRIS) were included in the renal groups, and a control group consisting of 10 cats was included. All animals were enrolled on a maintenance diet for 30 days before the experimental period. The metabolomics analysis was performed by gas chromatography-mass spectrometry (GC-MS). Partial least squares discriminant analysis (PLS-DA) was performed on Metaboanalyst 4.0 software. Forty-three metabolites were identified. Citric acid and monostearin were altered in the CKD2 group when compared to CKD1 and the control group at T0. A total of seven serum metabolites differed after 60 days of the renal diet: glycine, fructose, glutamic acid, arachidonic acid, stearic acid, creatinine, and urea. Changes were seen in the serum metabolomic profile after 60 days of the renal diet, and some of the metabolites that changed in response to the diet have beneficial effects on health. Overall, metabolomics markers have the potential to identify early stages of CKD, providing insights into the possible pathophysiologic processes that contribute to the development and progression of CKD.

3.
Metabolites ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34940602

RESUMO

This observational study aimed to evaluate serum and urinary amino acid (AA) concentrations in healthy dogs and dogs with chronic kidney disease (CKD) fed a commercial therapeutic renal diet with reduced protein and phosphorus levels. Ten dogs with CKD stages 3 or 4 composed the study group and received the renal diet for 180 days (RG T180). A control group (CG T30) composed of seven healthy dogs was fed a renal diet for 30 days. When comparing serum AA between RG T180 and CG T30, histidine, isoleucine, leucine, lysine, phenylalanine, tryptophan, cysteine, citrulline, ornithine, taurine, branched-chain amino acids (BCAA), and total essential amino acids (EAA) were higher in RG T180. Meanwhile, arginine, asparagine, aspartate, glutamine, serine, and tyrosine were higher in CG T30. Serum phenylalanine, tryptophan, and hydroxyproline were higher in RG T0 (dogs with CKD before consuming a renal diet) when compared to RG T180. In addition, the serum ratios of arginine/citrulline, tyrosine/phenylalanine, and serine/glycine were higher in CG T30 than in RG T180. Concerning urinary AA concentrations in CKD dogs, isoleucine, phenylalanine, tryptophan, aspartate, cysteine, and BCAA were higher in RG T180. In urine, the total EAA/total non-essential AA ratio in RG T180 was higher than in CG T30 as well as tyrosine/phenylalanine ratio higher in CG T30. In conclusion, the combination of renal diet and conservative treatment over 6 months in dogs with CKD stages 3 or 4 affected the AAs metabolism when compared to healthy adult dogs.

4.
Metabolites ; 11(11)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34822440

RESUMO

Chronic kidney disease (CKD) is highly prevalent in dogs, and metabolomics investigation has been recently introduced for a better understanding of the role of diet in CKD. This study aimed to compare the serum metabolomic profile of healthy dogs (CG) and dogs with CKD (CKD-T0 and CKD-T6) to evaluate whether the diet would affect metabolites. Six dogs (5 females; 1 male; 7.47 ± 2.31 years old) with CKD stage 3 or 4 (IRIS) were included. CG consisted of 10 healthy female dogs (5.89 ± 2.57 years old) fed a maintenance diet. Serum metabolites were analyzed by 1H nuclear magnetic resonance (1H NMR) spectra. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to assess differences in metabolomic profiles between groups and before (CKD-T0) and after renal diet (CKD-T6). Data analysis was performed on SIMCA-P software. Dogs with CKD showed an altered metabolic profile with increased urea, creatinine, creatine, citrate, and lipids. Lactate, branched-chain amino acids (BCAAs), and glutamine were decreased in the CKD group. However, after 6 months of diet, the metabolite profiles of CKD-T0 and CKD-T6 were similar. Metabolomics profile may be useful to evaluate and recognize metabolic dysfunction and progression of CKD, and the diet may have helped maintain and retard the progression of CKD.

5.
Sci Rep ; 11(1): 21007, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697366

RESUMO

Nowadays, there is a growing concern about contamination of toxic metals (TM) in pet food due to the great potential for health risks of these elements. TM concentrations in commercial pet foods (n = 100) as well as in ingredients used in their composition (n = 100) were analyzed and compared to the Food and Drug Administration (FDA) maximum tolerable level (MTL), and the TM concentrations found in the different sources of carbohydrate, protein, and fat were compared. The TM concentrations were determined by inductively coupled plasma with optical emission spectrometry (ICP-OES). Concentrations above the MTL for aluminum, mercury, lead, uranium, and vanadium were observed in both dog and cat foods, and the percentage of dog foods that exceeded the MTL of these TM were: 31.9%; 100%; 80.55%; 95.83%; and 75%, respectively, and in cat foods: 10.71%; 100%; 32.14%; 85.71%; 28.57%, respectively. The MTL values of these TMs and the mean values in dog foods (mg/kg dry matter basis) (MTL [mean ± standard deviation]) were: aluminum: 200 (269.17 ± 393.74); mercury: 0.27 (2.51 ± 1.31); lead: 10 (12.55 ± 4.30); uranium: 10 (76.82 ± 28.09); vanadium: 1 (1.35 ± 0.69), while in cat foods were: aluminum: 200 (135.51 ± 143.95); mercury: 0.27 (3.47 ± 4.31); lead: 10 (9.13 ± 5.42); uranium: 10 (49.83 ± 29.18); vanadium: 1 (0.81 ± 0.77). Dry foods presented higher concentrations of most TM (P < 0.05) than wet foods (P < 0.05). Among the carbohydrate sources, there were the highest levels of all TM except cobalt, mercury, and nickel in wheat bran (P < 0.05), while among the protein sources, in general, animal by-products had higher TM concentrations than plant-based ingredients. Pork fat had higher concentrations of arsenic, mercury, and antimony than fish oil and poultry fat. It was concluded that the pet foods evaluated in this study presented high concentrations of the following TM: aluminum, mercury, lead, uranium, and vanadium.


Assuntos
Ração Animal/análise , Ingredientes de Alimentos/análise , Metais Pesados/análise , Ração Animal/toxicidade , Animais , Gatos , Cães , Análise de Alimentos , Ingredientes de Alimentos/toxicidade , Intoxicação por Metais Pesados/veterinária
6.
PLoS One ; 15(9): e0238638, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32966299

RESUMO

Obesity is characterized by a low degree of chronic inflammation state that, along with metabolic modifications, promotes important changes in the animal's organism. Adipose tissue actively participates in inflammation and immunity, and several defense cells of the organism may, therefore, be involved in the diversity found between obese and ideal weight individuals. Studies regarding this subject have shown immune cell changes in humans and rats, however, the literature is scarce in relation to dogs. Thus, the present study aimed to evaluate the gene expression profile of immunoinflammatory response and the lymphoproliferation of obese dogs before and after weight loss. Eight female dogs, neutered, of different breeds, aged between 1 and 8 years (4.74±3.19), obese, with body condition score (BCS) of 9 out of a 9-point scale and body composition determined by the deuterium isotope dilution method were included. The obese dogs were enrolled in a weight loss program and after losing 20% of their initial weight became a second experimental group. A third experimental group consisted of eight female dogs, neutered, aged between 1 and 8 years (3.11±0.78) and with ideal BCS (5 out of a 9-point scale). Gene expression of immunoinflammatory cytokines (resistin, leptin, adiponectin, TNF-α, IL-6, IL-8, and IL-10) was assessed by qRT-PCR and immunity was assessed by lymphoproliferative response using the flow cytometry technique. The data that presented normal distribution was evaluated by analysis of variance by the PROC MIXED of the SAS and when differences were detected, these were compared by the Tukey test. Regarding the gene expression data, the procedure PROC GLIMMIX was adopted and the methodology of generalized linear model was used, in which the Gama distribution proved to be adequate. Values of p<0.05 were considered significant. The mean weight loss period of the animals included in the study was 194.25 ± 28.31 days and the mean weekly weight loss rate was 1.02 ± 0.82%. The average fat mass, both in percentage (P<0.001) and in kilograms (P = 0.012), was higher in the obese group (40.88%; 8.91kg), returning to normal and without difference between the control group (19.16%; 3.01kg) and after weight loss (22.10%; 4.11kg). The weight loss program resulted in an increase in percentage of lean body mass (P = 0.001), 55.50% in obese animals vs 77.90% in obese dogs after weight loss, the latter with no difference when compared to the control group (80.84%). The obese group presented increased gene expression of resistin and IL-8 in relation to the weight loss group (P = 0.002). In adiponectin, the obese group presented increased mRNA gene expression when compared to the weight loss group (P = 0.003). The evaluation of lymphocyte proliferation showed differences between the group of obese animals before and after weight loss (P = 0.004). Weight loss resulted in an increase in the lymphoproliferation rate (18.48%) compared to obese dogs at the beginning of the study (10.71%). These results indicate that weight loss modulates the immunoinflammatory response of obese dogs and may present important benefits to health and longevity of dogs.


Assuntos
Cães/genética , Cães/imunologia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Obesidade/genética , Obesidade/imunologia , Redução de Peso/genética , Adipocinas/genética , Adipocinas/metabolismo , Animais , Feminino , Linfócitos/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Toxins (Basel) ; 12(1)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31861622

RESUMO

An integrated study on the effect of renal diet on mineral metabolism, fibroblast growth factor 23 (FGF-23), total antioxidant capacity, and inflammatory markers has not been performed previously. In this study, we evaluated the effects of renal diet on mineral metabolism, oxidative stress and inflammation in dogs with stage 3 or 4 of chronic kidney disease (CKD). Body condition score (BCS), muscle condition score (MCS), serum biochemical profile, ionized calcium (i-Ca), total calcium (t-Ca), phosphorus (P), urea, creatinine, parathyroid hormone (PTH), FGF-23, interleukin 6 (IL-6), interleukin 10 (IL-10), tumor necrosis factor alpha (TNF-α) and total antioxidant capacity (TAC) were measured at baseline (T0) and after 6 months of dietary treatment (T6). Serum urea, P, t-Ca, i-Ca, PTH, FGF-23, IL-6, IL-10, TNF-α and TAC measurements did not differ between T0 and T6. Serum creatinine (SCr) was increased at T6 and serum PTH concentrations were positively correlated with serum SCr and urea. i-Ca was negatively correlated with urea and serum phosphorus was positively correlated with FGF-23. Urea and creatinine were positively correlated. The combination of renal diet and support treatment over 6 months in dogs with CKD stage 3 or 4 was effective in controlling uremia, acid-base balance, blood pressure, total antioxidant capacity, and inflammatory cytokine levels and in maintaining BCS and MCS.


Assuntos
Doenças do Cão/dietoterapia , Doenças do Cão/metabolismo , Eletrólitos/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/metabolismo , Equilíbrio Ácido-Base , Animais , Antioxidantes/metabolismo , Pressão Sanguínea , Cálcio/metabolismo , Citocinas/metabolismo , Dieta , Cães , Hormônios/metabolismo , Testes de Função Renal , Minerais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Insuficiência Renal Crônica/veterinária
8.
J Nutr Sci ; 6: e40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29152244

RESUMO

Neutering is a common veterinary recommendation and is often associated with obesity development. Thus, the aim of the present study was to evaluate the effects of two different amounts of protein intake by neutered dogs regarding maintenance energy requirement (MER), body composition, and biochemical and hormonal parameters. A total of fourteen healthy adult dogs were fed either a diet containing 59·7 g protein/1000 kcal (4184 kJ) (P60) or a diet with 94·0 g protein/1000 kcal (4184 kJ) (P94) for 26 weeks after neutering to maintain their body weight prior to neutering. A mixed model was fitted to verify diet, time and diet × time interaction effects on biochemical parameters, serum concentrations of insulin, glucagon, leptin and insulin-like growth factor-1 (IGF-1). MER and the body composition data were evaluated within diets (paired t test) and within times (unpaired t test). A time effect was found for fructosamine, TAG, total lipids and IGF-1 serum concentrations. The diet × time interaction was significant for glucagon (P < 0·05). No differences between diets in the MER within each time were found. However, there was a reduction in the MER of dogs fed the P60 diet 26 weeks after neutering (P = 0·042). The fat body mass of dogs fed the P60 diet increased (P < 0·05) after neutering, even without a body-weight change. Some of the biochemical parameters changed over time, but all remained within the normal range. For the period evaluated in the present study, a diet with 94·0 g of protein/1000 kcal (4184 kJ) metabolisable energy seems to be a beneficial nutritional strategy to maintain the MER and the body composition of dogs after neutering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA