RESUMO
A series of ligands based upon a 1,3-diimino-isoindoline framework have been synthesized and investigated as pincer-type (Nâ§Nâ§N) chelates for Pt(II). The synthetic route allows different combinations of heterocyclic moieties (including pyridyl, thiazole, and isoquinoline) to yield new unsymmetrical ligands. Pt(L1-6)Cl complexes were obtained and characterized using a range of spectroscopic and analytical techniques: 1H and 13C NMR, IR, UV-vis and luminescence spectroscopies, elemental analyses, high-resolution mass spectrometry, electrochemistry, and one example via X-ray crystallography which showed a distorted square planar environment at Pt(II). Cyclic voltammetry on the complexes showed one irreversible oxidation between +0.75 and +1 V (attributed to Pt2+/3+ couple) and a number of ligand-based reductions; in four complexes, two fully reversible reductions were noted between -1.4 and -1.9 V. Photophysical studies showed that Pt(L1-6)Cl absorbs efficiently in the visible region through a combination of ligand-based bands and metal-to-ligand charge-transfer features at 400-550 nm, with assignments supported by DFT calculations. Excitation at 500 nm led to luminescence (studied in both solutions and solid state) in all cases with different combinations of the heterocyclic donors providing tuning of the emission wavelength around 550-678 nm.
RESUMO
A series of mixed ligand, photoluminescent organometallic Ir(III) complexes have been synthesized to incorporate substituted 2-phenyl-1H-naphtho[2,3-d]imidazole cyclometalating ligands. The structures of three example complexes were categorically confirmed using X-ray crystallography each sharing very similar structural traits including evidence of interligand hydrogen bond contacts that account for the shielding effects observed in the 1H NMR spectra. The structural iterations of the cyclometalated ligand provide tuning of the principal electronic transitions that determine the visible absorption and emission properties of the complexes: emission can be tuned in the visible region between 550 and 610 nm and with triplet lifetimes up to 10 µs. The nature of the emitting state varies across the series of complexes, with different admixtures of ligand-centered and metal-to-ligand charge transfer triplet levels evident. Finally, the use of the complexes as photosensitizers in triplet-triplet annihilation energy upconversion (TTA-UC) was investigated in the solution state. The study showed that the complexes possessing the longest triplet lifetimes showed good viability as photosensitizers in TTA-UC. Therefore, the use of an electron-withdrawing group on the 2-phenyl-1H-naphtho[2,3-d]imidazole ligand framework can be used to rationally promote TTA-UC using this class of complex.
RESUMO
A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2)â Å. The highly coloured complexes display efficient visible absorption at 400-500â nm (ϵ ≈5000â M-1 â cm-1 ) and orange red photoluminescent characteristics (λem =603-620â nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.
RESUMO
A series of photoluminescent Ru(II) polypyridine complexes have been synthesized in a manner that varies the extent of the cationic charge. Two ligand systems (L1 and L2), based upon 2,2'-bipyridine (bipy) mono- or difunctionalized at the 5- or 5,5'-positions using N-methylimidazolium groups, were utilized. The resulting Ru(II) species therefore carried +3, +4, +6, and +8 complex moieties based on a [Ru(bipy)3]2+ core. Tetra-cationic [Ru(bipy)2(L2)][PF6]4 was characterized using XRD, revealing H-bonding interactions between two of the counteranions and the cationic unit. The ground-state features of the complexes were found to closely resemble those of the parent unfunctionalized [Ru(bipy)3]2+ complex. In contrast, the excited state properties produce a variation in emission maxima, including a bathochromic 44 nm shift of the 3MLCT band for the tetra-cationic complex; interestingly, further increases in overall charge to +6 and +8 produced a hypsochromic shift in the 3MLCT band. Supporting DFT calculations suggest that the trend in emission behavior may, in part, be due to the precise nature of the LUMO and its localization. The utility of a photoactive polycationic Ru(II) complex was then demonstrated through the sensitization of a polyanionic Yb(III) complex in free solution. The study shows that electrostatically driven ion pairing is sufficient to facilitate energy transfer between the 3MLCT donor state of the Ru(II) complex and the accepting 2F5/2 excited state of Yb(III).
RESUMO
Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693â nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.
RESUMO
A series of ligands have been synthesized based upon a polysubstituted 2-phenylquinoxaline core structure. These ligands introduce different combinations of fluorine and methyl substituents on both the phenyl and quinoxaline constituent rings. The resultant investigation of these species as cyclometalating agents for Ir(III) gave cationic complexes of the form [Ir(C^N)2(bipy)]PF6 (where C^N = cyclometalating ligand; bipy = 2,2'-bipyridine). X-ray crystallographic studies were conducted on four complexes and each revealed the expected distorted octahedral geometry based upon a cis-C,C and trans-N,N ligand arrangement at Ir(III). Supporting computational studies predict that each of the complexes share the same general descriptions for the frontier orbitals. TD-DFT calculations suggest MLCT contributions to the lowest energy absorption and a likely MLCT/ILCT/LLCT nature to the emitting state. Experimentally, the complexes display tunable luminescence across the yellow-orange-red part of the visible spectrum (λem = 579-655 nm).
RESUMO
A series of heteroleptic, neutral iridium(III) complexes of the form [Ir(L)2(N^O)] (where L = cyclometalated 2,3-disubstituted quinoxaline and N^O = ancillary picolinate or pyrazinoate) are described in terms of their synthesis and spectroscopic properties, with supporting computational analyses providing additional insight into the electronic properties. The 10 [Ir(L)2(N^O)] complexes were characterized using a range of analytical techniques (including 1H, 13C, and 19F NMR and IR spectroscopies and mass spectrometry). One of the examples was structurally characterized using X-ray diffraction. The redox properties were determined using cyclic voltammetry, and the electronic properties were investigated using UV-vis, time-resolved luminescence, and transient absorption spectroscopies. The complexes are phosphorescent in the red region of the visible spectrum (λem = 633-680 nm), with lifetimes typically of hundreds of nanoseconds and quantum yields ca. 5% in aerated chloroform. A combination of spectroscopic and computational analyses suggests that the long-wavelength absorption and emission properties of these complexes are strongly characterized by a combination of spin-forbidden metal-to-ligand charge-transfer and quinoxaline-centered transitions. The emission wavelength in these complexes can thus be controlled in two ways: first, substitution of the cyclometalating quinoxaline ligand can perturb both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital levels (LUMO, Cl atoms on the ligand induce the largest bathochromic shift), and second, the choice of the ancillary ligand can influence the HOMO energy (pyrazinoate stabilizes the HOMO, inducing hypsochromic shifts).
RESUMO
A series of substituted 2-phenylquinoxaline ligands have been explored to finely tune the visible emission properties of a corresponding set of cationic, cyclometallated iridium(III) complexes. The electronic and redox properties of the complexes were investigated through experimental (including time-resolved luminescence and transient absorption spectroscopy) and theoretical methods. The complexes display absorption and phosphorescent emissions in the visible region that are attributed to metal to ligand charge-transfer transitions. The different substitution patterns of the ligands induce variations in these parameters. Time-dependent DFT studies support these assignments and show that there is likely to be a strong spin-forbidden contribution to the visible absorption bands at λ=500-600â nm. Calculations also reliably predict the magnitude and trends in triplet emitting wavelengths for the series of complexes. The complexes were assessed as potential sensitisers in triplet-triplet annihilation upconversion experiments by using 9,10-diphenylanthracene as the acceptor; the methylated variants performed especially well with impressive upconversion quantum yields of up to 39.3 %.
RESUMO
A first-generation machine-assisted approach towards the preparation of hybrid ligand/metal materials has been developed. A comparison of synthetic approaches demonstrates that incorporation of both flow chemistry and microwave heating can be successfully applied to the rapid synthesis of a range of new phenyl-1H-pyrazoles (ppz) substituted with electron-withdrawing groups (-F, -CF3 , -OCF3 , and -SF5 ). These, in turn, can be translated into heteroleptic complexes, [Ir(ppz)2 (bipy)]BF4 (bipy=2,2'-bipyridine). Microwave-assisted synthesis for the IrIII complexes allows isolation of spectroscopically pure species in less than 1â h of reaction time starting from IrCl3 . All of the new complexes have been characterised photophysically (including nanosecond time-resolved transient absorption spectroscopy), electrochemically, and by TD-DFT studies. The complexes exhibit ligand-dependent, tuneable, green-yellow luminescence (500-560â nm), with quantum yields in the range 5-15 %.
RESUMO
A series of tris-heteroleptic iridium complexes of the form [Ir(C^N1)(C^N2)(acac)] combining 2-phenylpyridine (ppy), 2-(2,4-difluorophenyl)pyridine (dFppy), 1-phenylpyrazole (ppz), and 1-(2,4-difluorophenyl)pyrazole (dFppz) as the C^N ligands have been synthesized and fully characterized by NMR, X-ray crystallography, UV-vis absorption and emission spectroscopy, and electrochemical methods. It is shown that "static properties" (e.g., absorption and emission spectra and redox potentials) are primarily dictated by the overall architecture of the complex, while "dynamic properties" (e.g., excited-state lifetime and radiative and nonradiative rate constants) are, in addition, sensitive to the specific positioning of the substituents. As a result, the two complexes [Ir(dFppy)(ppz)(acac)] and [Ir(ppy)(dFppz)(acac)] have the same emission maxima and redox potentials, but their radiative and nonradiative rate constants differ significantly by a factor â¼2. Then acetylacetonate (acac) was replaced by picolinate (pic), and two pairs of diastereoisomers were obtained. As expected, the use of pic as the ancillary ligand results in blue-shifted emission, stabilization of the oxidation potential, and improvement of the photoluminescence quantum yield, and only minor differences in the optoelectronic properties are found between the two diastereoisomers of each pair.
RESUMO
Three new sets of mononuclear Ln(III) complexes of general formulas [LnL3 ]â CH3 OH [Ln(III) =Yb (1), Er (2), Dy (3), Gd (4), and Eu (5)], [LnL2 (tmh)(CH3 OH)]â n H2 Oâ m CH3 OH [Ln(III) =Yb (1 b), Er (2 b), Dy (3 b), Gd (4 b)], and [LnL2 (tta)(CH3 OH)]â CH3 OH [Ln(III) =Yb (1 c), Er (2 c), Dy (3 c), Gd (4 c)] were prepared by the reaction of Ln(CF3 SO3 )â n H2 O salts with the tridentate ligand 2-(tetrazol-5-yl)-1,10-phenanthroline (HL) and, for the last two sets, additionally with the ß-diketonate ligands 2,2,6,6-tetramethylheptanoate (tmh) and 2-thenoyltrifluoroacetonate (tta), respectively. In the [LnL3 ]â CH3 OH complexes the Ln(III) ions are coordinated to three phenanthroline tetrazolate ligands with an LnN9 coordination sphere. Dynamic ac magnetic measurements on 1-3 reveal that these complexes only exhibit single-molecule magnet (SMM) behavior when an external dc magnetic field is applied, with Ueff values of 11.7â K (1), 16.0â K (2), and 20.2â K (3). When the tridentate phenanthroline tetrazolate ligand is replaced by one molecule of methanol and the ß-diketonate ligand tmh (1 b-3 b) or tta (1 c-3 c), a significant increase in Ueff occurs and, in the case of the Dy(III) complexes 3 b and 3 c, out-of-phase χ'' signals below 15 and 10â K, respectively, are observed in zero dc magnetic field. CASSCF+RASSI ab initio calculations performed on the Dy(III) complexes support the experimental results. Thus, for 3 the ground Kramers' doublet is far from being axial and the first excited state is found to be very close in energy to the ground state, so the relaxation barrier in this case is almost negligible. Conversely, for 3 b and 3 c, the ground Kramers' doublet is axial with a small quantum tunneling of the magnetization, and the energy difference between the ground and first Kramers' doublets is much higher, which allows these compounds to behave as SMMs at zero field. Moreover, these calculations support the larger Ueff observed for 3 b compared to 3 c. Additionally, the solid-state photophysical properties of 1, 2, 4, and 5 show that the phenanthroline tetrazolate ligand can act as an effective antenna to sensitize the characteristic Yb(III) , Er(III) , and Eu(III) emissions through an energy-transfer process.
RESUMO
The syntheses and crystal structures of 16 new rare-earth (RE = La(3+)-Y(3+))-3,5-dichlorobenzoic acid-terpyridine molecular materials characterized via single-crystal and powder X-ray diffraction are reported. These 16 complexes consist of four unique structure types ranging from molecular dimers (La(3+) and Ce(3+)) to tetramers (Pr(3+)-Y(3+)) as one moves across the RE(3+) series. This structural evolution is accompanied by subsequent changes in modes of supramolecular assembly (halogen bonding, halogen-π, halogen-halogen, and π-π interactions). Solid-state visible and near-infrared lifetime measurements were performed on complexes 6 (Sm(3+)), 7 (Eu(3+)), 9 (Tb(3+)), 10 (Dy(3+)), 11 (Ho(3+)), 12 (Er(3+)), and 14 (Yb(3+)), and characteristic emission was observed for all complexes except 11. Lifetime data for 11, 12, and 14 suggest sensitization by the terpy antenna does occur in near-infrared systems, although not as efficiently as in the visible region. Additionally, direct current magnetic susceptibility measurements were taken for complexes 10 (Dy(3+)) and 12 (Er(3+)) and showed dominant ferromagnetic behavior.
RESUMO
Trivalent lanthanide ions offer remarkable opportunities in the design of bioimaging agents: this review presents an accessible discussion of their application in both optical and magnetic resonance imaging. Aspects of molecular design, control over key physical properties and biological compatibility are discussed in this context, together with developments and opportunities as responsive probes and in multimodal imaging.
Assuntos
Meios de Contraste , Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética/métodos , Microscopia de Fluorescência/métodos , Animais , Células HeLa , Humanos , CamundongosRESUMO
The syntheses of nine new monometallic heteroleptic platinum complexes [Pt(L1-4)(acac)], [Pt(L1)(hmacac/hfacac)], [PtCl(L1)(py)], [Pt(L1)(8-Q)], [Pt(L1)(bpy)](PF6) (where L1 = 2-phenyl-4-ethyl-quinolinecarboxylate; L2/L3 = N-functionalization of 2-phenyl-N-aryl/alkyl-quinoline-4-carboxamides; L4 = 2-phenyl-4-quinolinecarboxylic acid (cinchophen); acac = acetylacetonato; hmacac =2,2,6,6-tetramethyl-3,5-heptanedionate; hfacac = hexafluoroacetylacetonate; py = pyridine; 8-Q = 8-quinolinato; bpy =2,2'-bipyridine) are described from precursor dimeric Pt(II) species via an intermediate DMSO adduct of the general form [PtCl(L1-4)(DMSO)]. Single crystal X-ray diffraction studies were undertaken on three complexes, [Pt(L1)(acac)], [PtCl(L1)(DMSO)], and [Pt(L1)(bpy)](PF6). The structures show that the complexes each adopt a distorted square planar geometry (most severely in the case of [Pt(L1)(bpy)](PF6)) with indications of intermolecular Pt-Pt interactions in one example. The complexes were investigated using (195)Pt{(1)H} NMR spectroscopy, revealing varied chemical shifts that were strongly dependent upon the specific coordination environment of Pt(II). Luminescence studies showed the complexes possess a phosphorescent character with tunable emission wavelengths between 605 and 641 nm and luminescent lifetimes up to â¼450 ns. Supporting TD-DFT studies provided descriptions of the HOMO and LUMO energy levels of the key complex types, confirming an MLCT contribution to the lowest energy absorption that generally correlated well with the experimental spectra. The contribution of the Pt(5d) center to the calculated HOMOs was strongly ligand dependent, whereas the LUMOs are generally localized over the quinoline component of the cyclometalated ligand.
Assuntos
Modelos Moleculares , Compostos Organoplatínicos/química , Platina/química , Quinolinas/química , Cristalografia por Raios X , Ciclização , Eletrônica , Ligantes , Luminescência , Espectroscopia de Ressonância Magnética , Compostos Organoplatínicos/síntese químicaRESUMO
A range of fluorescent alkynyl-naphthalimide fluorophores has been synthesized and their photophysical properties examined. The fluorescent ligands are based upon a 4-substituted 1,8-naphthalimide core and incorporate structural variations (at the 4-position) to tune the amphiphilic character: chloro (L1), 4-[2-(2-aminoethoxy)ethanol] (L2), 4-[2-(2-methoxyethoxy)ethylamino] (L3), piperidine (L4), morpholine (L5), 4-methylpiperidine (L6), and 4-piperidone ethylene ketal (L7) variants. The amino-substituted species (L2-L7) are fluorescent in the visible region at around 517-535 nm through a naphthalimide-localized intramolecular charge transfer (ICT), with appreciable Stokes' shifts of ca. 6500 cm(-1) and lifetimes up to 10.4 ns. Corresponding two-coordinate Au(I) complexes [Au(L)(PPh3)] were isolated, with X-ray structural studies revealing the expected coordination mode via the alkyne donor. The Au(I) complexes retain the visible fluorescence associated with the coordinated alkynyl-naphthalimide ligand. The ligands and complexes were investigated for their cytotoxicity across a range of cell lines (LOVO, MCF-7, A549, PC3, HEK) and their potential as cell imaging agents for HEK (human embryonic kidney) cells and Spironucleus vortens using confocal fluorescence microscopy. The images reveal that these fluorophores are highly compatible with fluorescence microscopy and show some clear intracellular localization patterns that are dependent upon the specific nature of the naphthalimide substituent.
Assuntos
Complexos de Coordenação/química , Corantes Fluorescentes/química , Ouro/química , Naftalimidas/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Cristalografia por Raios X , Corantes Fluorescentes/farmacologia , Humanos , Microscopia Confocal , Estrutura Molecular , Naftalimidas/farmacologiaRESUMO
The reaction of the compartmental ligand N,N',Nâ³-trimethyl-N,Nâ³-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L) with Zn(NO3)2·6H2O and subsequently with Ln(NO3)3·5H2O (Ln(III) = Gd and Yb) and triethylamine in MeOH using a 1:1:1:1 molar ratio leads to the formation of the tetranuclear complexes {(µ3-CO3)2[Zn(µ-L)Gd(NO3)]2}·4CH3OH (1) and{(µ3-CO3)2[Zn(µ-L)Yb(H2O)]2}(NO3)2·4CH3OH (2). When the reaction was performed in the absence of triethylamine, the dinuclear compound [Zn(µ-L)(µ-NO3)Yb(NO3)2] (3) is obtained. The structures of 1 and 2 consist of two diphenoxo-bridged Zn(II)-Ln(III) units connected by two carbonate bridging ligands. Within the dinuclear units, Zn(II) and Ln(III) ions occupy the N3O2 inner and the O4 outer sites of the compartmental ligand, respectively. The remaining positions on the Ln(III) ions are occupied by oxygen atoms belonging to the carbonate bridging groups, by a bidentate nitrate ion in 1, and by a coordinated water molecule in 2, leading to rather asymmetric GdO9 and trigonal dodecahedron YbO8 coordination spheres, respectively. Complex 3 is made of acetate-diphenoxo triply bridged Zn(II)Yb(III) dinuclear units, where the Yb(III) exhibits a YbO9 coordination environment. Variable-temperature magnetization measurements and heat capacity data demonstrate that 1 has a significant magneto-caloric effect, with a maximum value of -ΔSm = 18.5 J kg(-1) K(-1) at T = 1.9 K and B = 7 T. Complexes 2 and 3 show slow relaxation of the magnetization and single-molecule magnet (SMM) behavior under an applied direct-current field of 1000 Oe. The fit of the high-temperature data to the Arrhenius equation affords an effective energy barrier for the reversal of the magnetization of 19.4(7) K with τo = 3.1 × 10(-6) s and 27.0(9) K with τo = 8.8 × 10(-7) s for 2 and 3, respectively. However, the fit of the full range of temperature data indicates that the relaxation process could take place through a Raman-like process rather than through an activated Orbach process. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Yb(III)-based luminescence in complexes 2 and 3 through an intramolecular energy transfer to the excited states of the accepting Yb(III) ion. These complexes show several bands in the 945-1050 nm region, corresponding to (2)F5/2â(2)F7/2 transitions arising from the ligand field splitting of both multiplets. The observed luminescence lifetimes τobs are 0.515 and 10 µs for 2 and 3, respectively. The shorter lifetime for 2 is due to the presence of one coordinated water molecule on the Yb(III) center (and to a lesser extent noncoordinated water molecules), facilitating vibrational quenching via O-H oscillators. Therefore, complexes 2 and 3, combining field-induced SMM behavior and NIR luminescence, can be considered to be dual magneto-luminescent materials.
RESUMO
There were new dinuclear Zn(II)-Ln(III) complexes of general formulas [Zn(µ-L)(µ-OAc)Ln(NO3)2] (Ln(III) = Tb (1), Dy (2), Er (3), and Yb (4)), [Zn(µ-L)(µ-NO3)Er(NO3)2] (5), [Zn(H2O)(µ-L)Nd(NO3)3]·2CH3OH (6), [Zn(µ-L)(µ-9-An)Ln(NO3)2]·2CH3CN (Ln(III) = Tb (7), Dy (8), Er (9), Yb(10)), [Zn(µ-L)(µ-9-An)Yb(9-An)(NO3)3]·3CH3CN (11), [Zn(µ-L)(µ-9-An)Nd(9-An)(NO3)3]·2CH3CN·3H2O (12), and [Zn(µ-L)(µ-9-An)Nd(CH3OH)2(NO3)]ClO4·2CH3OH (13) prepared from the reaction of the compartmental ligand N,N',Nâ³-trimethyl-N,Nâ³-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine (H2L), with ZnX2·nH2O (X = NO3(-) or OAc(-)) salts, Ln(NO3)3·nH2O, and, in some instances, 9-anthracenecarboxylate anion (9-An). In all these complexes, the Zn(II) ions invariably occupy the internal N3O2 site whereas the Ln(III) ions show preference for the O4 external site, giving rise to a Zn(µ-diphenoxo)Ln bridging fragment. Depending on the Zn(II) salt and solvent used in the reaction, a third bridge can connect the Zn(II) and Ln(III) metal ions, giving rise to triple-bridged diphenoxoacetate in complexes 1-4, diphenoxonitrate in complex 5, and diphenoxo(9-anthracenecarboxylate) in complexes 8-13. Dy(III) and Er(III) complexes 2, 8 and 3, 5, respectively, exhibit field induced single molecule magnet (SMM) behavior, with Ueff values ranging from 11.7 (3) to 41(2) K. Additionally, the solid-state photophysical properties of these complexes are presented showing that ligand L(2-) is able to sensitize Tb(III)- and Dy(III)-based luminescence in the visible region through an energy transfer process (antenna effect). The efficiency of this process is much lower when NIR emitters such as Er(III), Nd(III), and Yb(III) are considered. When the luminophore 9-anthracene carboxylate is incorporated into these complexes, the NIR luminescence is enhanced which proves the efficiency of this bridging ligand to act as antenna group. Complexes 2, 3, 5, and 8 can be considered as dual materials as they combine SMM behavior and luminescent properties.
RESUMO
A range of biologically compatible, fluorescent rhenium-naphthalimide conjugates, based upon the rhenium fac-tricarbonyl core, has been synthesized. The fluorescent ligands are based upon a N-functionalized, 4-amino-derived 1,8-naphthalimide core and incorporate a dipicolyl amine binding unit to chelate Re(I); the structural variations accord to the nature of the alkylated imide with ethyl ester glycine (L(1)), 3-propanol (L(2)), diethylene glycol (L(3)), and benzyl alcohol (L(4)) variants. The species are fluorescent in the visible region between 505 and 537 nm through a naphthalimide-localized intramolecular charge transfer, with corresponding fluorescent lifetimes of up to 9.8 ns. The ligands and complexes were investigated for their potential as imaging agents for human osteoarthritic cells and protistan fish parasite Spironucleus vortens using confocal fluorescence microscopy. The results show that the specific nature of the naphthalimide structure serves to control the uptake and intracellular localization of these imaging agents. Significant differences were noted between the free ligands and complexes, with the Re(I) complex of L(2) showing hydrogenosomal localization in S. vortens.
Assuntos
Células/ultraestrutura , Corantes Fluorescentes/síntese química , Naftalimidas/química , Rênio/química , Linhagem Celular , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Microscopia Confocal , Microscopia de Fluorescência , Modelos MolecularesRESUMO
A series of Ru(II) and Ir(III) based photoluminescent complexes were synthesised that incorporate an ancillary 2,2'-bipyridine ligand adorned with either one or two pendant N-methyl imidazolium groups. These complexes have been fully characterised by an array of spectroscopic and analytical techniques. One Ir(III) example was unequivocally structurally characterised in the solid state using single crystal X-ray diffraction confirming the proposed formulation and coordination sphere. These complexes were then transformed into their heterometallic, Au(I)-containing, analogues in two steps to yield either bi- or trimetallic complexes that integrate {Au(PPh3)}+ units. X-ray diffraction was used to corroborate the solid state structure of the hetero bimetallic complex, based upon a Ru(II)-Au(I) species. The heterometallic complexes all displayed red photoluminescent features (λem = 616-629 nm) that were consistent with the parent Ru(II) or Ir(III) lumophores in each case. The modulation of the emission from the Ru(II)-Au(I) complexes was much more strongly evident than for the Ir(III)-Au(I) analogues, which is ascribed to the inherent differences in the specific triplet excited state character of the emitting states within each heterometallic species.
RESUMO
Controlled formation of mixed-metal bimetallics was achieved via two derivatised 1,10-phenanthroline ligands bearing an imino- or amino-phosphine appendage at the 5-position. Selective coordination of the phen group to the [Re(CO)3Cl] core was achieved enabling precise construction of bimetallic complexes with a second rhenium centre or with gold. The mixed Ru/Au complex was similarly obtained with the imino-phosphine but access to the heterobimetallic iridium systems required prior formation of the P-bound gold complexes subsequent to the introduction of the [Ir(Ppy)2]+ fragment. The Re/Pd, Re/Pt, Ir/Pd and Ir/Pt compounds were prepared from the combination of κ-N'',P-Pd(Pt)Cl2 and the appropriate rhenium or iridium precursors. Spectroscopic and theoretical analyses have been employed to investigate the structural and electronic impact of the second metal.