Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Bacteriol ; 206(3): e0033323, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38411059

RESUMO

Although bacterial peptidoglycan (PG) is highly conserved, some natural variations in PG biosynthesis and structure have evolved. Understanding the mechanisms and limits of such variation will inform our understanding of antibiotic resistance, innate immunity, and the evolution of bacteria. We have explored the constraints on PG evolution by blocking essential steps in PG biosynthesis in Vibrio fischeri and then selecting mutants with restored prototrophy. Here, we attempted to select prototrophic suppressors of a D-glutamate auxotrophic murI racD mutant. No suppressors were isolated on unsupplemented lysogeny broth salts (LBS), despite plating >1011 cells, nor were any suppressors generated through mutagenesis with ethyl methanesulfonate. A single suppressor was isolated on LBS supplemented with iso-D-gln, although the iso-D-gln subsequently appeared irrelevant. This suppressor has a genomic amplification formed by the creation of a novel junction that fuses proB to a gene encoding a putative broad-spectrum racemase of V. fischeri, bsrF. An engineered bsrF allele lacking the putative secretion signal (ΔSS-bsrF) also suppressed D-glu auxotrophy, resulting in PG that was indistinguishable from the wild type. The ΔSS-bsrF allele similarly suppressed the D-alanine auxotrophy of an alr mutant and restored prototrophy to a murI alr double mutant auxotrophic for both D-ala and D-glu. The ΔSS-bsrF allele increased resistance to D-cycloserine but had no effect on sensitivity to PG-targeting antibiotics penicillin, ampicillin, or vancomycin. Our work helps define constraints on PG evolution and reveals a periplasmic broad-spectrum racemase in V. fischeri that can be co-opted for PG biosynthesis, with concomitant D-cycloserine resistance. IMPORTANCE: D-Amino acids are used and produced by organisms across all domains of life, but often, their origins and roles are not well understood. In bacteria, D-ala and D-glu are structural components of the canonical peptidoglycan cell wall and are generated by dedicated racemases Alr and MurI, respectively. The more recent discovery of additional bacterial racemases is broadening our view and deepening our understanding of D-amino acid metabolism. Here, while exploring alternative PG biosynthetic pathways in Vibrio fischeri, we unexpectedly shed light on an unusual racemase, BsrF. Our results illustrate a novel mechanism for the evolution of antibiotic resistance and provide a new avenue for exploring the roles of non-canonical racemases and D-amino acids in bacteria.


Assuntos
Alanina Racemase , Ácido Glutâmico , Ácido Glutâmico/metabolismo , Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Racemases e Epimerases/metabolismo , Ciclosserina , Peptidoglicano/metabolismo , Aminoácidos/metabolismo , Alanina Racemase/metabolismo
2.
J Bacteriol ; 205(10): e0014223, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37338384

RESUMO

Dormant bacterial spores undergo the process of germination to return to a vegetative state. In most species, germination involves the sensing of nutrient germinants, the release of various cations and a calcium-dipicolinic acid (DPA) complex, spore cortex degradation, and full rehydration of the spore core. These steps are mediated by membrane-associated proteins, and all these proteins have exposure on the outer surface of the membrane, a hydrated environment where they are potentially subject to damage during dormancy. A family of lipoproteins, including YlaJ, which is expressed from the sleB operon in some species, are present in all sequenced Bacillus and Clostridium genomes that contain sleB. B. subtilis possesses four proteins in this family, and prior studies have demonstrated two of these are required for efficient spore germination and these proteins contain a multimerization domain. Genetic studies of strains lacking all combinations of these four genes now reveal all four play roles in ensuring efficient germination, and affect multiple steps in this process. Electron microscopy does not reveal significant changes in spore morphology in strains lacking lipoproteins. Generalized polarization measurements of a membrane dye probe indicate the lipoproteins decrease spore membrane fluidity. These data suggest a model in which the lipoproteins form a macromolecular structure on the outer surface of the inner spore membrane, where they act to stabilize the membrane and potentially interact with other germination proteins, and thus stabilize the function of multiple components of the germination machinery. IMPORTANCE Bacterial spores exhibit extreme longevity and resistance to many killing agents, and are thus problematic agents of several diseases and of food spoilage. However, to cause disease or spoilage, germination of the spore and return to the vegetative state is necessary. The proteins responsible for initiation and progression of germination are thus potential targets for spore-killing processes. A family of membrane-bound lipoproteins that are conserved across most spore-forming species was studied in the model organism Bacillus subtilis. The results indicate that these proteins reduce the membrane fluidity and increase the stability of other membrane associated proteins that are required for germination. Further understanding of such protein interactions on the spore membrane surface will enhance our understanding of the germination process and its potential as a decontamination method target.


Assuntos
Bacillus subtilis , Esporos Bacterianos , Humanos , Bacillus subtilis/metabolismo , Esporos Bacterianos/metabolismo , Fluidez de Membrana , Estado Vegetativo Persistente/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
Cell ; 135(3): 486-96, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18984160

RESUMO

Bacteria can respond to adverse environmental conditions by drastically reducing or even ceasing metabolic activity. They must then determine that conditions have improved before exiting dormancy, and one indication of such a change is the growth of other bacteria in the local environment. Growing bacteria release muropeptide fragments of the cell wall into the extracellular milieu, and we report here that these muropeptides are potent germinants of dormant Bacillus subtilis spores. The ability of a muropeptide to act as a germinant is determined by the identity of a single amino acid. A well-conserved, eukaryotic-like Ser/Thr membrane kinase containing an extracellular domain capable of binding peptidoglycan is necessary for this response, and a small molecule that stimulates related eukaryotic kinases is sufficient to induce germination. Another small molecule, staurosporine, that inhibits related eukaryotic kinases blocks muropeptide-dependent germination. Thus, in contrast to traditional antimicrobials that inhibit metabolically active cells, staurosporine acts by blocking germination of dormant spores.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Membrana Celular/química , Oligopeptídeos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Estrutura Terciária de Proteína , Esporos Bacterianos/química , Estaurosporina/farmacologia
4.
J Bacteriol ; 204(2): e0057921, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871033

RESUMO

Despite the thousands of spore germinant receptor operons identified in genomes of bacilli and clostridia, understanding how the three essential receptor components act as a signal transduction machine in germination remains limited. The paper by Amon et al. in this issue uses the classical genetic approach of suppression to define a region of likely interaction between the GerAA and GerAB proteins: it provides a first glimpse into potential events within the receptor complex (J. D. Amon, L. Artzi, and D. Z. Rudner, J Bacteriol 204:e00470-21, 2022, https://doi.org/10.1128/JB.00470-21).


Assuntos
Bacillus subtilis , Esporos Bacterianos , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Esporos Bacterianos/genética , Supressão Genética
5.
J Bacteriol ; 204(9): e0025222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36005810

RESUMO

Bacterial SPOR domains target proteins to the divisome by binding septal peptidoglycan (PG) at sites where cell wall amidases have removed stem peptides. These PG structures are referred to as denuded glycans. Although all characterized SPOR domains bind denuded glycans, whether there are differences in affinity is not known. Here, we use isothermal titration calorimetry (ITC) to determine the relative PG glycan binding affinity (<i>K</i><sub>d</sub>) of four Escherichia coli SPOR domains and one Cytophaga hutchinsonii SPOR domain. We found that the <i>K</i><sub>d</sub> values ranged from approximately 1 µM for E. coli DamX<sup>SPOR</sup> and <i>C. hutchinsonii</i> CHU2221<sup>SPOR</sup> to about 10 µM for E. coli FtsN<sup>SPOR</sup>. To investigate whether these differences in PG binding affinity are important for SPOR domain protein function, we constructed and characterized a set of DamX and FtsN "swap" proteins. As expected, all SPOR domain swap proteins localized to the division site, and, in the case of FtsN, all of the heterologous SPOR domains supported cell division. However, for DamX, only the high-affinity SPOR domain from CHU2221 supported normal function in cell division. In summary, different SPOR domains bind denuded PG glycans with different affinities, which appears to be important for the functions of some SPOR domain proteins (e.g., DamX) but not for the functions of others (e.g., FtsN). <b>IMPORTANCE</b> SPOR domain proteins are prominent components of the cell division apparatus in a wide variety of bacteria. The primary function of SPOR domains is targeting proteins to the division site, which they accomplish by binding to septal peptidoglycan. However, whether SPOR domains have any functions beyond septal targeting is unknown. Here, we show that SPOR domains vary in their PG binding affinities and that, at least in the case of the E. coli cell division protein DamX, having a high-affinity SPOR domain contributes to proper function.


Assuntos
Proteínas de Escherichia coli , Peptidoglicano , Amidoidrolases/metabolismo , Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Ligação Proteica
6.
J Bacteriol ; 202(22)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32868404

RESUMO

Clostridioides (Clostridium) difficile is a major cause of hospital-acquired infections leading to antibiotic-associated diarrhea. C. difficile exhibits a very high level of resistance to lysozyme. Bacteria commonly resist lysozyme through modification of the cell wall. In C. difficile, σV is required for lysozyme resistance, and σV is activated in response to lysozyme. Once activated, σV, encoded by csfV, directs transcription of genes necessary for lysozyme resistance. Here, we analyze the contribution of individual genes in the σV regulon to lysozyme resistance. Using CRISPR-Cas9-mediated mutagenesis we constructed in-frame deletions of single genes in the csfV operon. We find that pdaV, which encodes a peptidoglycan deacetylase, is partially responsible for lysozyme resistance. We then performed CRISPR inhibition (CRISPRi) to identify a second peptidoglycan deacetylase, encoded by pgdA, that is important for lysozyme resistance. Deletion of either pgdA or pdaV resulted in modest decreases in lysozyme resistance. However, deletion of both pgdA and pdaV resulted in a 1,000-fold decrease in lysozyme resistance. Further, muropeptide analysis revealed that loss of either PgdA or PdaV had modest effects on peptidoglycan deacetylation but that loss of both PgdA and PdaV resulted in almost complete loss of peptidoglycan deacetylation. This suggests that PgdA and PdaV are redundant peptidoglycan deacetylases. We also used CRISPRi to compare other lysozyme resistance mechanisms and conclude that peptidoglycan deacetylation is the major mechanism of lysozyme resistance in C. difficileIMPORTANCEClostridioides difficile is the leading cause of hospital-acquired diarrhea. C. difficile is highly resistant to lysozyme. We previously showed that the csfV operon is required for lysozyme resistance. Here, we used CRISPR-Cas9 mediated mutagenesis and CRISPRi knockdown to show that peptidoglycan deacetylation is necessary for lysozyme resistance and is the major lysozyme resistance mechanism in C. difficile We show that two peptidoglycan deacetylases in C. difficile are partially redundant and are required for lysozyme resistance. PgdA provides an intrinsic level of deacetylation, and PdaV, encoded by a part of the csfV operon, provides lysozyme-induced peptidoglycan deacetylation.


Assuntos
Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Clostridioides difficile/enzimologia , Muramidase/metabolismo , Peptidoglicano/química , Amidoidrolases/genética , Proteínas de Bactérias/genética , Clostridioides difficile/patogenicidade , Regulação Bacteriana da Expressão Gênica , Óperon , Virulência
7.
J Bacteriol ; 201(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30602489

RESUMO

Bacterial endospores produced by Bacillus and Clostridium species can remain dormant and highly resistant to environmental insults for long periods, but they can also rapidly germinate in response to a nutrient-rich environment. Multiple proteins involved in sensing and responding to nutrient germinants, initiating solute and water transport, and accomplishing spore wall degradation are associated with the membrane surrounding the spore core. In order to more fully catalog proteins that may be involved in spore germination, as well as to identify protein changes taking place during germination, unbiased proteomic analyses of membrane preparations isolated from dormant and germinated spores of Bacillus anthracis and Bacillus subtilis were undertaken. Membrane-associated proteins were fractionated by SDS-PAGE, gel slices were trypsin digested, and extracted peptides were fractionated by liquid chromatography and analyzed by matrix-assisted laser desorption ionization-tandem time of flight mass spectrometry. More than 500 proteins were identified from each preparation. Bioinformatic methods were used to characterize proteins with regard to membrane association, cellular function, and conservation across species. Numerous proteins not previously known to be spore associated, 6 in B. subtilis and 68 in B. anthracis, were identified. Relative quantitation based on spectral counting indicated that the majority of spore membrane proteins decrease in abundance during the first 20 min of germination. The spore membranes contained several proteins thought to be involved in the transport of metal ions, a process that plays a major role in spore formation and germination. Analyses of mutant strains lacking these transport proteins implicated YloB in the accumulation of calcium within the developing forespore.IMPORTANCE Bacterial endospores can remain dormant and highly resistant to environmental insults for long periods but can also rapidly germinate in response to a nutrient-rich environment. The persistence and subsequent germination of spores contribute to their colonization of new environments and to the spread of certain diseases. Proteins of Bacillus subtilis and Bacillus anthracis were identified that are associated with the spore membrane, a position that can allow them to contribute to germination. A set of identified proteins that are predicted to carry out ion transport were examined for their contributions to spore formation, stability, and germination. Greater knowledge of spore formation and germination can contribute to the development of better decontamination strategies.


Assuntos
Bacillus anthracis/química , Bacillus subtilis/química , Proteínas de Membrana Transportadoras/análise , Proteoma/análise , Esporos Bacterianos/química , Cromatografia Líquida , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tripsina/metabolismo
8.
BMC Microbiol ; 19(1): 169, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31349814

RESUMO

BACKGROUND: Bacillus cells faced with unfavorable environmental conditions undergo an asymmetric division process ultimately leading to the formation of the bacterial spore. In some instances the spore serves as an infectious agent; such is the case with the spore of Bacillus anthracis and the disease anthrax. Spores are resistant to a variety of environment conditions including traditional decontamination techniques due to the formation of specialized cellular structures. One such structure, the spore cortex, is a thick layer of modified peptidoglycan that contributes to spore dormancy through maintenance of the dehydrated state of the spore core. During spore germination, degradation of the cortex is required to facilitate complete hydration of the core and a return to vegetative growth. Degradation of the cortex is accomplished through the action of germination-specific lytic enzymes. One of these enzymes, SleB, has been previously shown to require the presence of the YpeB protein for its stable incorporation and subsequent function in spores of B. anthracis. The focus of the present study is to identify protein interactions of YpeB through in vivo chemical cross-linking and two-hybrid analysis. RESULTS: Conserved residues within YpeB PepSY domains were altered to facilitate implementation of a site-specific chemical cross-linker, 4-Azidophenacyl bromide. Analyses of crosslinked-spore extracts suggests that YpeB exists as a dimer or larger multimer within the spore, potentially mediated through interactions of the C-terminal domains. Spores expressing stable truncated forms of YpeB were crosslinked and corresponding truncated dimers were detected. Further characterization of individual YpeB domains using bacterial two-hybrid analysis indicated a possible role for both N-and C-terminal domains in YpeB oligomerization. CONCLUSIONS: The YpeB protein likely exists as dimer or higher-order multimer in the dormant spore. Both the N- and C-terminal YpeB domains contribute to multimerization. SleB likely also exists as an oligomer, and SleB and YpeB may be found together within a protein complex. Disassembly of this complex during spore germination likely allows SleB to become active in spore cortex degradation. Further study of this protein complex may contribute to the development of methods to inhibit or stimulate germination, allowing more effective spore decontamination.


Assuntos
Amidoidrolases/metabolismo , Bacillus anthracis , Proteínas de Bactérias/genética , Esporos Bacterianos/metabolismo , Bacillus anthracis/genética , Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Dimerização , Genes Bacterianos , Mutagênese Sítio-Dirigida , Peptidoglicano/metabolismo , Esporos Bacterianos/química
9.
J Bacteriol ; 200(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29437849

RESUMO

Mounting evidence suggests that d-amino acids play previously underappreciated roles in diverse organisms. In bacteria, even d-amino acids that are absent from canonical peptidoglycan (PG) may act as growth substrates, as signals, or in other functions. Given these proposed roles and the ubiquity of d-amino acids, the paucity of known d-amino-acid-responsive transcriptional control mechanisms in bacteria suggests that such regulation awaits discovery. We found that DarR, a LysR-type transcriptional regulator (LTTR), activates transcription in response to d-Asp. The d-Glu auxotrophy of a Vibrio fischerimurI::Tn mutant was suppressed, with the wild-type PG structure maintained, by a point mutation in darR This darR mutation resulted in the overexpression of an adjacent operon encoding a putative aspartate racemase, RacD, which compensated for the loss of the glutamate racemase encoded by murI Using transcriptional reporters, we found that wild-type DarR activated racD transcription in response to exogenous d-Asp but not upon the addition of l-Asp, l-Glu, or d-Glu. A DNA sequence typical of LTTR-binding sites was identified between darR and the divergently oriented racD operon, and scrambling this sequence eliminated activation of the reporter in response to d-Asp. In several proteobacteria, genes encoding LTTRs similar to DarR are linked to genes with predicted roles in d- and/or l-Asp metabolism. To test the functional similarities in another bacterium, darR and racD mutants were also generated in Acinetobacter baylyi In V. fischeri and A. baylyi, growth on d-Asp required the presence of both darR and racD Our results suggest that multiple bacteria have the ability to sense and respond to d-Asp.IMPORTANCE d-Amino acids are prevalent in the environment and are generated by organisms from all domains of life. Although some biological roles for d-amino acids are understood, in other cases, their functions remain uncertain. Given the ubiquity of d-amino acids, it seems likely that bacteria will initiate transcriptional responses to them. Elucidating d-amino acid-responsive regulators along with the genes they control will help uncover bacterial uses of d-amino acids. Here, we report the discovery of DarR, a novel LTTR in V. fischeri that mediates a transcriptional response to environmental d-Asp and underpins the catabolism of d-Asp. DarR represents the founding member of a group of bacterial homologs that we hypothesize control aspects of aspartate metabolism in response to d-Asp and/or to d-Asp-containing peptides.


Assuntos
Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Ácido D-Aspártico/farmacologia , Fatores de Transcrição/metabolismo , Aliivibrio fischeri/enzimologia , Aliivibrio fischeri/genética , Proteínas de Bactérias/genética , DNA Intergênico , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Mutação , Ligação Proteica , Fatores de Transcrição/genética
10.
J Bacteriol ; 198(12): 1773-1782, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068591

RESUMO

UNLABELLED: Heat-resistant endospore formation plays an important role in Clostridium perfringens-associated foodborne illnesses. The spores allow the bacterium to survive heating during normal cooking processes, followed by germination and outgrowth of the bacterium in contaminated foods. To identify proteins associated with germination and other spore functions, a comparative spore membrane proteome analysis of dormant and germinated spores of C. perfringens strain SM101 was performed by using gel-based protein separation and liquid chromatography coupled with matrix-assisted laser desorption ionization-tandem time of flight (MALDI-TOF/TOF) mass spectrometry. A total of 494 proteins were identified, and 117 of them were predicted to be integral membrane or membrane-associated proteins. Among these membrane proteins, 16 and 26 were detected only in dormant and germinated spores, respectively. One protein that was detected only in germinated spore membranes was the enzyme cyanophycinase, a protease that cleaves the polymer cyanophycin, which is composed of l-arginine-poly(l-aspartic acid), to ß-Asp-Arg. Genes encoding cyanophycinase and cyanophycin synthetase have been observed in many species of Clostridium, but their role has not been defined. To determine the function of cyanophycin in C. perfringens, a mutation was introduced into the cphA gene, encoding cyanophycin synthetase. In comparison to parent strain SM101, the spores of the mutant strain retained wild-type levels of heat resistance, but fewer spores were made, and they were smaller, suggesting that cyanophycin synthesis plays a role in spore assembly. Although cyanophycin could not be extracted from sporulating C. perfringens cells, an Escherichia coli strain expressing the cphA gene made copious amounts of cyanophycin, confirming that cphA encodes a cyanophycin synthetase. IMPORTANCE: Clostridium perfringens is a common cause of food poisoning, and germination of spores after cooking is thought to play a significant role in the disease. How C. perfringens controls the germination process is still not completely understood. We characterized the proteome of the membranes from dormant and germinated spores and discovered that large-scale changes occur after germination is initiated. One of the proteins that was detected after germination was the enzyme cyanophycinase, which degrades the storage compound cyanophycin, which is found in cyanobacteria and other prokaryotes. A cyanophycin synthetase mutant was constructed and found to make spores with altered morphology but normal heat resistance, suggesting that cyanophycin plays a different role in C. perfringens than it does in cyanobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/crescimento & desenvolvimento , Proteoma/metabolismo , Esporos Bacterianos/enzimologia , Proteínas de Bactérias/genética , Clostridium perfringens/química , Clostridium perfringens/enzimologia , Clostridium perfringens/genética , Espectrometria de Massas , Proteoma/química , Proteoma/genética , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
11.
J Bacteriol ; 197(2): 326-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384476

RESUMO

Bacterial endospores can remain dormant for decades yet can respond to nutrients, germinate, and resume growth within minutes. An essential step in the germination process is degradation of the spore cortex peptidoglycan wall, and the SleB protein in Bacillus species plays a key role in this process. Stable incorporation of SleB into the spore requires the YpeB protein, and some evidence suggests that the two proteins interact within the dormant spore. Early during germination, YpeB is proteolytically processed to a stable fragment. In this work, the primary sites of YpeB cleavage were identified in Bacillus anthracis, and it was shown that the stable products are comprised of the C-terminal domain of YpeB. Modification of the predominant YpeB cleavage sites reduced proteolysis, but cleavage at other sites still resulted in loss of full-length YpeB. A B. anthracis strain lacking the HtrC protease did not generate the same stable YpeB products. In B. anthracis and Bacillus subtilis htrC mutants, YpeB was partially stabilized during germination but was still degraded at a reduced rate by other, unidentified proteases. Purified HtrC cleaved YpeB to a fragment similar to that observed in vivo, and this cleavage was stimulated by Mn(2+) or Ca(2+) ions. A lack of HtrC did not stabilize YpeB or SleB during spore formation in the absence of the partner protein, indicating other proteases are involved in their degradation during sporulation.


Assuntos
Bacillus anthracis/metabolismo , Bacillus anthracis/fisiologia , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/fisiologia
12.
Mol Microbiol ; 93(1): 113-28, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24806796

RESUMO

Rare lipoprotein A (RlpA) is a widely conserved outer membrane protein of unknown function that has previously only been studied in Escherichia coli, where it localizes to the septal ring and scattered foci along the lateral wall, but mutants have no phenotypic change. Here we show rlpA mutants of Pseudomonas aeruginosa form chains of short, fat cells when grown in low osmotic strength media. These morphological defects indicate RlpA is needed for efficient separation of daughter cells and maintenance of rod shape. Analysis of peptidoglycan sacculi from an rlpA deletion mutant revealed increased tetra and hexasaccharides that lack stem peptides (hereafter called 'naked glycans'). Incubation of these sacculi with purified RlpA resulted in release of naked glycans containing 1,6-anhydro N-acetylmuramic acid ends. RlpA did not degrade sacculi from wild-type cells unless the sacculi were subjected to a limited digestion with an amidase to remove some of the stem peptides. Thus, RlpA is a lytic transglycosylase with a strong preference for naked glycan strands. We propose that RlpA activity is regulated in vivo by substrate availability, and that amidases and RlpA work in tandem to degrade peptidoglycan in the division septum and lateral wall.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/fisiologia , Proteínas de Bactérias/genética , Divisão Celular , Parede Celular/metabolismo , Glicosídeo Hidrolases/genética , Mutação , Peptidoglicano/metabolismo , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/enzimologia , Especificidade por Substrato
13.
J Bacteriol ; 196(19): 3399-409, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25022853

RESUMO

The infectious agent of the disease anthrax is the spore of Bacillus anthracis. Bacterial spores are extremely resistant to environmental stresses, which greatly hinders spore decontamination efforts. The spore cortex, a thick layer of modified peptidoglycan, contributes to spore dormancy and resistance by maintaining the low water content of the spore core. The cortex is degraded by germination-specific lytic enzymes (GSLEs) during spore germination, rendering the cells vulnerable to common disinfection techniques. This study investigates the relationship between SleB, a GSLE in B. anthracis, and YpeB, a protein necessary for SleB stability and function. The results indicate that ΔsleB and ΔypeB spores exhibit similar germination phenotypes and that the two proteins have a strict codependency for their incorporation into the dormant spore. In the absence of its partner protein, SleB or YpeB is proteolytically degraded soon after expression during sporulation, rather than escaping the developing spore. The three PepSY domains of YpeB were examined for their roles in the interaction with SleB. YpeB truncation mutants illustrate the necessity of a region beyond the first PepSY domain for SleB stability. Furthermore, site-directed mutagenesis of highly conserved residues within the PepSY domains resulted in germination defects corresponding to reduced levels of both SleB and YpeB in the mutant spores. These results identify residues involved in the stability of both proteins and reiterate their codependent relationship. It is hoped that the study of GSLEs and interacting proteins will lead to the use of GSLEs as targets for efficient activation of spore germination and facilitation of spore cleanup.


Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus anthracis/enzimologia , Bacillus anthracis/genética , Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Hidrólise , Esporos Bacterianos/química , Esporos Bacterianos/enzimologia , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
14.
J Bacteriol ; 196(13): 2405-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24748614

RESUMO

Clostridium perfringens is a Gram-positive anaerobic pathogen of humans and animals. Although they lack flagella, C. perfringens bacteria can still migrate across surfaces using a type of gliding motility that involves the formation of filaments of bacteria lined up in an end-to-end conformation. In strain SM101, hypermotile variants are often found arising from the edges of colonies on agar plates. Hypermotile cells are longer than wild-type cells, and video microscopy of their gliding motility suggests that they form long, thin filaments that move rapidly away from a colony, analogously to swarmer cells in bacteria with flagella. To identify the cause(s) of the hypermotility phenotype, the genome sequences of normal strains and their direct hypermotile derivatives were determined and compared. Strains SM124 and SM127, hypermotile derivatives of strains SM101 and SM102, respectively, contained 10 and 6 single nucleotide polymorphisms (SNPs) relative to their parent strains. While SNPs were located in different genes in the two sets of strains, one feature in common was mutations in cell division genes, an ftsI homolog in strain SM124 (CPR_1831) and a minE homolog in strain SM127 (CPR_2104). Complementation of these mutations with wild-type copies of each gene restored the normal motility phenotype. A model explaining the principles underlying the hypermotility phenotype is presented.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Divisão Celular/genética , Cefalexina/farmacologia , Clostridium perfringens/efeitos dos fármacos , Teste de Complementação Genética , Movimento , Mutação
15.
Infect Immun ; 82(6): 2345-55, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24664503

RESUMO

Clostridium difficile is a clinically important pathogen and the most common cause of hospital-acquired infectious diarrhea. Expression of the C. difficile gene csfV, which encodes σ(V), an extracytoplasmic function σ factor, is induced by lysozyme, which damages the peptidoglycan of bacteria. Here we show that σ(V) is required for lysozyme resistance in C. difficile. Using microarray analysis, we identified the C. difficile genes whose expression is dependent upon σ(V) and is induced by lysozyme. Although the peptidoglycan of wild-type C. difficile is intrinsically highly deacetylated, we have found that exposure to lysozyme leads to additional peptidoglycan deacetylation. This lysozyme-induced deacetylation is dependent upon σ(V). Expression of pdaV, which encodes a putative peptidoglycan deacetylase, was able to increase lysozyme resistance of a csfV mutant. The csfV mutant strain is severely attenuated compared to wild-type C. difficile in a hamster model of C. difficile-associated disease. We conclude that the σ(V) signal transduction system, which senses the host innate immune defense enzyme lysozyme, is required for lysozyme resistance and is necessary during C. difficile infection.


Assuntos
Clostridioides difficile/patogenicidade , Enterocolite Pseudomembranosa/microbiologia , Muramidase/metabolismo , Fator sigma/fisiologia , Animais , Antibacterianos/farmacologia , Clostridioides difficile/efeitos dos fármacos , Cricetinae , DNA Bacteriano/análise , Modelos Animais de Doenças , Análise em Microsséries , Testes de Sensibilidade Microbiana , Fator sigma/metabolismo , Virulência/fisiologia
16.
Mol Microbiol ; 88(4): 645-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23551458

RESUMO

Decades of study have revealed the fine chemical structure of the bacterial peptidoglycan cell wall, but the arrangement of the peptidoglycan strands within the wall has been challenging to define. The application of electron cryotomography (ECT) and new methods for fluorescent labelling of peptidoglycan are allowing new insights into wall structure and synthesis. Two articles in this issue examine peptidoglycan structures in the model Gram-positive species Bacillus subtilis. Beeby et al. combined visualization of peptidoglycan using ECT with molecular modelling of three proposed arrangements of peptidoglycan strands to identify the model most consistent with their data. They argue convincingly for a Gram-positive wall containing multiple layers of peptidoglycan strands arranged circumferentially around the long axis of the rod-shaped cell, an arrangement similar to the single layer of peptidoglycan in similarly shaped Gram-negative cells. Tocheva et al. examined sporulating cells using ECT and fluorescence microscopy to demonstrate the continuous production of a thin layer of peptidoglycan around the developing spore as it is engulfed by the membrane of the adjacent mother cell. The presence of this peptidoglycan in the intermembrane space allows the refinement of a model for engulfment, which has been known to include peptidoglycan synthetic and lytic functions.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/ultraestrutura , Parede Celular/ultraestrutura , Peptidoglicano/metabolismo , Peptidoglicano/ultraestrutura , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/ultraestrutura
17.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559057

RESUMO

Clostridioides difficile, the leading cause of antibiotic-associated diarrhea, relies primarily on 3-3 crosslinks created by L,D-transpeptidases (LDTs) to fortify its peptidoglycan (PG) cell wall. This is unusual, as in most bacteria the vast majority of PG crosslinks are 4-3 crosslinks, which are created by penicillin-binding proteins (PBPs). Here we report the unprecedented observation that 3-3 crosslinking is essential for viability in C. difficile. We also report the discovery of a new family of LDTs that use a VanW domain to catalyze 3-3 crosslinking rather than a YkuD domain as in all previously known LDTs. Bioinformatic analyses indicate VanW domain LDTs are less common than YkuD domain LDTs and are largely restricted to Gram-positive bacteria. Our findings suggest that LDTs might be exploited as targets for antibiotics that kill C. difficile without disrupting the intestinal microbiota that is important for keeping C. difficile in check.

18.
J Bacteriol ; 195(23): 5308-15, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056104

RESUMO

SPOR domains are about 75 amino acids long and probably bind septal peptidoglycan during cell division. We mutagenized 33 amino acids with surface-exposed side chains in the SPOR domain from an Escherichia coli cell division protein named FtsN. The mutant SPOR domains were fused to Tat-targeted green fluorescent protein ((TT)GFP) and tested for septal localization in live E. coli cells. Lesions at the following 5 residues reduced septal localization by a factor of 3 or more: Q251, S254, W283, R285, and I313. All of these residues map to a ß-sheet in the published solution structure of FtsN(SPOR). Three of the mutant proteins (Q251E, S254E, and R285A mutants) were purified and found to be defective in binding to peptidoglycan sacculi in a cosedimentation assay. These results match closely with results from a previous study of the SPOR domain from DamX, even though these two SPOR domains share <20% amino acid identity. Taken together, these findings support the proposal that SPOR domains localize by binding to septal peptidoglycan and imply that the binding site is associated with the ß-sheet. We also show that FtsN(SPOR) contains a disulfide bond between ß-sheet residues C252 and C312. The disulfide bond contributes to protein stability, cell division, and peptidoglycan binding.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Peptidoglicano/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Sequência de Aminoácidos , Divisão Celular/fisiologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica
19.
Biochemistry ; 52(4): 627-39, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23290046

RESUMO

SPOR domains are present in thousands of bacterial proteins and probably bind septal peptidoglycan (PG), but the details of the SPOR-PG interaction have yet to be elucidated. Here we characterize the structure and function of the SPOR domain for an Escherichia coli division protein named DamX. Nuclear magnetic resonance revealed the domain comprises a four-stranded antiparallel ß-sheet buttressed on one side by two α-helices. A third helix, designated α3, associates with the other face of the ß-sheet, but this helix is relatively mobile. Site-directed mutagenesis revealed the face of the ß-sheet that interacts with α3 is important for septal localization and binding to PG sacculi. The position and mobility of α3 suggest it might regulate PG binding, but although α3 deletion mutants still localized to the septal ring, they were too unstable to use in a PG binding assay. Finally, to assess the importance of the SPOR domain in DamX function, we constructed and characterized E. coli mutants that produced DamX proteins with SPOR domain point mutations or SPOR domain deletions. These studies revealed the SPOR domain is important for multiple activities associated with DamX: targeting the protein to the division site, conferring full resistance to the bile salt deoxycholate, improving the efficiency of cell division when DamX is produced at normal levels, and inhibiting cell division when DamX is overproduced.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Peptidoglicano/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Divisão Celular , Sequência Conservada , Ácido Desoxicólico/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Propriedades de Superfície
20.
bioRxiv ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986874

RESUMO

Bacillus subtilis spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a dedicated chaperone from a distinct higher-order clade of AAA+ ATPases that activates the peptidoglycan glycosyltransferase MurG during sporulation, even though MurG does not normally require activation by a chaperone during vegetative growth. MurG redeploys to the spore surface during sporulation, where we show that the local pH is reduced and propose that this change in cytosolic nanoenvironment necessitates a specific chaperone for proper MurG function. Further, we show that SpoVK participates in a developmental checkpoint in which improper spore surface assembly inactivates SpoVK, which leads to sporulation arrest. The AAA+ ATPase clade containing SpoVK includes other dedicated chaperones involved in secretion, cell-envelope biosynthesis, and carbohydrate metabolism, suggesting that such fine-tuning might be a widespread feature of different subcellular nanoenvironments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA