Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biochemistry (Mosc) ; 89(2): 223-240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38622092

RESUMO

Worldwide, interest in mitochondria is constantly growing, as evidenced by scientific statistics, and studies of the functioning of these organelles are becoming more prevalent than studies of other cellular structures. In this analytical review, mitochondria are conditionally placed in a certain cellular center, which is responsible for both energy production and other non-energetic functions, without which the existence of not only the eukaryotic cell itself, but also the entire organism is impossible. Taking into account the high multifunctionality of mitochondria, such a fundamentally new scheme of cell functioning organization, including mitochondrial management of processes that determine cell survival and death, may be justified. Considering that this issue is dedicated to the memory of V. P. Skulachev, who can be called mitocentric, due to the history of his scientific activity almost entirely aimed at studying mitochondria, this work examines those aspects of mitochondrial functioning that were directly or indirectly the focus of attention of this outstanding scientist. We list all possible known mitochondrial functions, including membrane potential generation, synthesis of Fe-S clusters, steroid hormones, heme, fatty acids, and CO2. Special attention is paid to the participation of mitochondria in the formation and transport of water, as a powerful biochemical cellular and mitochondrial regulator. The history of research on reactive oxygen species that generate mitochondria is subject to significant analysis. In the section "Mitochondria in the center of death", special emphasis is placed on the analysis of what role and how mitochondria can play and determine the program of death of an organism (phenoptosis) and the contribution made to these studies by V. P. Skulachev.


Assuntos
Mitocôndrias , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38542129

RESUMO

The positive effects of female sex hormones, particularly estradiol and progesterone, have been observed in treatment of various pathologies. Acute kidney injury (AKI) is a common condition in hospitalized patients in which the molecular mechanisms of hormone action are poorly characterized. In this study, we investigated the influence of estradiol and progesterone on renal cells during ischemic injury. We performed both in vivo experiments on female and male rats and in vitro experiments on renal tubular cells (RTCs) obtained from the kidneys of intact animals of different sexes. Since mitochondria play an important role in the pathogenesis of AKI, we analyzed the properties of individual mitochondria in renal cells, including the area, roundness, mitochondrial membrane potential, and mitochondrial permeability transition pore (mPTP) opening time. We found that pre-treatment with progesterone or estradiol attenuated the severity of ischemia/reperfusion (I/R)-induced AKI in female rats, whereas in male rats, these hormones exacerbated renal dysfunction. We demonstrated that the mPTP opening time was higher in RTCs from female rats than that in those from male rats, which may be one of the reasons for the higher tolerance of females to ischemic injury. In RTCs from the kidneys of male rats, progesterone caused mitochondrial fragmentation, which can be associated with reduced cell viability. Thus, therapy with progesterone or estradiol displays quite different effects depending on sex, and could be only effective against ischemic AKI in females.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Humanos , Ratos , Masculino , Feminino , Animais , Progesterona/efeitos adversos , Estradiol/efeitos adversos , Rim/patologia , Isquemia/complicações , Traumatismo por Reperfusão/patologia , Injúria Renal Aguda/etiologia
3.
Biochemistry (Mosc) ; 88(10): 1596-1607, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105027

RESUMO

Mitochondria in a cell can unite and organize complex, extended structures that occupy the entire cellular volume, providing an equal supply with energy in the form of ATP synthesized in mitochondria. In accordance with the chemiosmotic concept, the oxidation energy of respiratory substrates is largely stored in the form of an electrical potential difference on the inner membrane of mitochondria. The theory of the functioning of extended mitochondrial structures as intracellular electrical wires suggests that mitochondria provide the fastest delivery of electrical energy through the cellular volume, followed by the use of this energy for the synthesis of ATP, thereby accelerating the process of ATP delivery compared to the rather slow diffusion of ATP in the cell. This analytical review gives the history of the cable theory, lists unsolved critical problems, describes the restructuring of the mitochondrial network and the role of oxidative stress in this process. In addition to the already proven functioning of extended mitochondrial structures as electrical cables, a number of additional functions are proposed, in particular, the hypothesis is put forth that mitochondrial networks maintain the redox potential in the cellular volume, which may vary depending on the physiological state, as a result of changes in the three-dimensional organization of the mitochondrial network (fragmentation/fission-fusion). A number of pathologies accompanied by a violation of the redox status and the participation of mitochondria in them are considered.


Assuntos
Mitocôndrias , Estresse Oxidativo , Mitocôndrias/metabolismo , Oxirredução , Trifosfato de Adenosina/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768899

RESUMO

The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as ß-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.


Assuntos
Dieta Cetogênica , Epilepsia , Animais , Corpos Cetônicos/uso terapêutico , Dieta Cetogênica/métodos , Epilepsia/tratamento farmacológico , Encéfalo , Isquemia/tratamento farmacológico
5.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008909

RESUMO

Uremic retention solutes are the compounds that accumulate in the blood when kidney excretory function is impaired. Some of these compounds are toxic at high concentrations and are usually known as "uremic toxins". The cumulative detrimental effect of uremic toxins results in numerous health problems and eventually mortality during acute or chronic uremia, especially in end-stage renal disease. More than 100 different solutes increase during uremia; however, the exact origin for most of them is still debatable. There are three main sources for such compounds: exogenous ones are consumed with food, whereas endogenous ones are produced by the host metabolism or by symbiotic microbiota metabolism. In this article, we identify uremic retention solutes presumably of gut microbiota origin. We used database analysis to obtain data on the enzymatic reactions in bacteria and human organisms that potentially yield uremic retention solutes and hence to determine what toxins could be synthesized in bacteria residing in the human gut. We selected biochemical pathways resulting in uremic retention solutes synthesis related to specific bacterial strains and revealed links between toxin concentration in uremia and the proportion of different bacteria species which can synthesize the toxin. The detected bacterial species essential for the synthesis of uremic retention solutes were then verified using the Human Microbiome Project database. Moreover, we defined the relative abundance of human toxin-generating enzymes as well as the possibility of the synthesis of a particular toxin by the human metabolism. Our study presents a novel bioinformatics approach for the elucidation of the origin of both uremic retention solutes and uremic toxins and for searching for the most likely human microbiome producers of toxins that can be targeted and used for the therapy of adverse consequences of uremia.


Assuntos
Microbioma Gastrointestinal , Toxinas Urêmicas/metabolismo , Animais , Bactérias/metabolismo , Análise por Conglomerados , Enzimas/metabolismo , Humanos , Metadados , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232326

RESUMO

The decrease in the number of resident progenitor cells with age was shown for several organs. Such a loss is associated with a decline in regenerative capacity and a greater vulnerability of organs to injury. However, experiments evaluating the number of progenitor cells in the kidney during aging have not been performed until recently. Our study tried to address the change in the number of renal progenitor cells with age. Experiments were carried out on young and old transgenic nestin-green fluorescent protein (GFP) reporter mice, since nestin is suggested to be one of the markers of progenitor cells. We found that nestin+ cells in kidney tissue were located in the putative niches of resident renal progenitor cells. Evaluation of the amount of nestin+ cells in the kidneys of different ages revealed a multifold decrease in the levels of nestin+ cells in old mice. In vitro experiments on primary cultures of renal tubular cells showed that all cells including nestin+ cells from old mice had a lower proliferation rate. Moreover, the resistance to damaging factors was reduced in cells obtained from old mice. Our data indicate the loss of resident progenitor cells in kidneys and a decrease in renal cells proliferative capacity with aging.


Assuntos
Rim , Células-Tronco , Animais , Proteínas de Fluorescência Verde/metabolismo , Rim/metabolismo , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Células-Tronco/metabolismo
7.
Int J Mol Sci ; 23(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008907

RESUMO

The mitochondrial membrane potential (∆Ψ) is the driving force providing the electrical component of the total transmembrane potential of hydrogen ions generated by proton pumps, which is utilized by the ATP synthase. The role of ∆Ψ is not limited to its role in bioenergetics since it takes part in other important intracellular processes, which leads to the mandatory requirement of the homeostasis of ∆Ψ. Conventionally, ∆Ψ in living cells is estimated by the fluorescence of probes such as rhodamine 123, tetramethylrodamine, etc. However, when assessing the fluorescence, the possibility of the intracellular/intramitochondrial modification of the rhodamine molecule is not taken into account. Such changes were revealed in this work, in which a comparison of normal (astrocytic) and tumor (glioma) cells was conducted. Fluorescent microscopy, flow cytometry, and mass spectrometry revealed significant modifications of rhodamine molecules developing over time, which were prevented by amiodarone apparently due to blocking the release of xenobiotics from the cell and their transformation with the participation of cytochrome P450. Obviously, an important role in these processes is played by the increased retention of rhodamines in tumor cells. Our data require careful evaluation of mitochondrial ∆Ψ potential based on the assessment of the fluorescence of the mitochondrial probe.


Assuntos
Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Sondas Moleculares/metabolismo , Rodamina 123/metabolismo , Animais , Astrócitos/metabolismo , Extratos Celulares , Linhagem Celular Tumoral , Fluorescência , Glioma/metabolismo , Ratos , Fatores de Tempo
8.
Int J Mol Sci ; 23(13)2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35806411

RESUMO

Extracellular vesicles (EV) derived from stem cells have become an effective complement to the use in cell therapy of stem cells themselves, which has led to an explosion of research into the mechanisms of vesicle formation and their action. There is evidence demonstrating the presence of mitochondrial components in EV, but a definitive conclusion about whether EV contains fully functional mitochondria has not yet been made. In this study, two EV fractions derived from mesenchymal stromal stem cells (MSC) and separated by their size were examined. Flow cytometry revealed the presence of mitochondrial lipid components capable of interacting with mitochondrial dyes MitoTracker Green and 10-nonylacridine orange; however, the EV response to the probe for mitochondrial membrane potential was negative. Detailed analysis revealed components from all mitochondria compartments, including house-keeping mitochondria proteins and DNA as well as energy-related proteins such as membrane-localized proteins of complexes I, IV, and V, and soluble proteins from the Krebs cycle. When assessing the functional activity of mitochondria, high variability in oxygen consumption was noted, which was only partially attributed to mitochondrial respiratory activity. Our findings demonstrate that the EV contain all parts of mitochondria; however, their independent functionality inside EV has not been confirmed, which may be due either to the absence of necessary cofactors and/or the EV formation process and, probably the methodology of obtaining EV.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Citometria de Fluxo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias
9.
Int J Mol Sci ; 20(12)2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31242575

RESUMO

Elucidation of molecular and cellular mechanisms of the uremic syndrome is a very challenging task. More than 130 substances are now considered to be "uremic toxins" and represent a very diverse group of molecules. The toxicity of these molecules affects many cellular processes, and expectably, some of them are able to disrupt mitochondrial functioning. However, mitochondria can be the source of uremic toxins as well, as the mitochondrion can be the site of complete synthesis of the toxin, whereas in some scenarios only some enzymes of the pathway of toxin synthesis are localized here. In this review, we discuss the role of mitochondria as both the target and source of pathological processes and toxic compounds during uremia. Our analysis revealed about 30 toxins closely related to mitochondria. Moreover, since mitochondria are key regulators of cellular redox homeostasis, their functioning might directly affect the production of uremic toxins, especially those that are products of oxidation or peroxidation of cellular components, such as aldehydes, advanced glycation end-products, advanced lipoxidation end-products, and reactive carbonyl species. Additionally, as a number of metabolic products can be degraded in the mitochondria, mitochondrial dysfunction would therefore be expected to cause accumulation of such toxins in the organism. Alternatively, many uremic toxins (both made with the participation of mitochondria, and originated from other sources including exogenous) are damaging to mitochondrial components, especially respiratory complexes. As a result, a positive feedback loop emerges, leading to the amplification of the accumulation of uremic solutes. Therefore, uremia leads to the appearance of mitochondria-damaging compounds, and consecutive mitochondrial damage causes a further rise of uremic toxins, whose synthesis is associated with mitochondria. All this makes mitochondrion an important player in the pathogenesis of uremia and draws attention to the possibility of reducing the pathological consequences of uremia by protecting mitochondria and reducing their role in the production of uremic toxins.


Assuntos
Mitocôndrias/metabolismo , Ureia/metabolismo , Uremia/metabolismo , Injúria Renal Aguda/complicações , Injúria Renal Aguda/metabolismo , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Humanos , Mitocôndrias/efeitos dos fármacos , Terapia de Alvo Molecular , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Toxinas Biológicas/metabolismo , Toxinas Biológicas/toxicidade , Ureia/toxicidade , Uremia/sangue , Uremia/tratamento farmacológico , Uremia/etiologia
10.
Int J Mol Sci ; 20(24)2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31847447

RESUMO

A kidney is an organ with relatively low basal cellular regenerative potential. However, renal cells have a pronounced ability to proliferate after injury, which undermines that the kidney cells are able to regenerate under induced conditions. The majority of studies explain yielded regeneration either by the dedifferentiation of the mature tubular epithelium or by the presence of a resident pool of progenitor cells in the kidney tissue. Whether cells responsible for the regeneration of the kidney initially have progenitor properties or if they obtain a "progenitor phenotype" during dedifferentiation after an injury, still stays the open question. The major stumbling block in resolving the issue is the lack of specific methods for distinguishing between dedifferentiated cells and resident progenitor cells. Transgenic animals, single-cell transcriptomics, and other recent approaches could be powerful tools to solve this problem. This review examines the main mechanisms of kidney regeneration: dedifferentiation of epithelial cells and activation of progenitor cells with special attention to potential niches of kidney progenitor cells. We attempted to give a detailed description of the most controversial topics in this field and ways to resolve these issues.


Assuntos
Desdiferenciação Celular/fisiologia , Epitélio/fisiologia , Túbulos Renais/citologia , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Células Epiteliais/citologia , Humanos
11.
Anal Biochem ; 552: 50-59, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28711444

RESUMO

The mitochondrial membrane potential (ΔΨm) generated by proton pumps (Complexes I, III and IV) is an essential component in the process of energy storage during oxidative phosphorylation. Together with the proton gradient (ΔpH), ΔΨm forms the transmembrane potential of hydrogen ions which is harnessed to make ATP. The levels of ΔΨm and ATP in the cell are kept relatively stable although there are limited fluctuations of both these factors that can occur reflecting normal physiological activity. However, sustained changes in both factors may be deleterious. A long-lasting drop or rise of ΔΨm vs normal levels may induce unwanted loss of cell viability and be a cause of various pathologies. Among other factors, ΔΨm plays a key role in mitochondrial homeostasis through selective elimination of dysfunctional mitochondria. It is also a driving force for transport of ions (other than H+) and proteins which are necessary for healthy mitochondrial functioning. We propose additional potential mechanisms for which ΔΨm is essential for maintenance of cellular health and viability and provide recommendations how to accurately measure ΔΨm in a cell and discuss potential sources of artifacts.


Assuntos
Potencial da Membrana Mitocondrial , Ânions/metabolismo , Cátions/metabolismo , Homeostase , Humanos , Transporte de Íons , Mitocôndrias/metabolismo
12.
Molecules ; 23(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562677

RESUMO

A recently discovered key role of reactive oxygen species (ROS) in mitochondrial traffic has opened a wide alley for studying the interactions between cells, including stem cells. Since its discovery in 2006, intercellular mitochondria transport has been intensively studied in different cellular models as a basis for cell therapy, since the potential of replacing malfunctioning organelles appears to be very promising. In this study, we explored the transfer of mitochondria from multipotent mesenchymal stem cells (MMSC) to neural cells and analyzed its efficacy under normal conditions and upon induction of mitochondrial damage. We found that mitochondria were transferred from the MMSC to astrocytes in a more efficient manner when the astrocytes were exposed to ischemic damage associated with elevated ROS levels. Such transport of mitochondria restored the bioenergetics of the recipient cells and stimulated their proliferation. The introduction of MMSC with overexpressed Miro1 in animals that had undergone an experimental stroke led to significantly improved recovery of neurological functions. Our data suggest that mitochondrial impairment in differentiated cells can be compensated by receiving healthy mitochondria from MMSC. We demonstrate a key role of Miro1, which promotes the mitochondrial transfer from MMSC and suggest that the genetic modification of stem cells can improve the therapies for the injured brain.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Células-Tronco Multipotentes/metabolismo , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Astrócitos/metabolismo , Proliferação de Células , Respiração Celular , Humanos , Mitocôndrias/patologia , Nanotubos/química , Células PC12 , Ratos
13.
Heart Lung Circ ; 26(7): 648-659, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28190758

RESUMO

Intercellular cross-talk is a fundamental process for spreading cellular signals between neighbouring and distant cells to properly regulate their metabolism, to coordinate homeostasis, adaptation and survival as a functional tissue and organ. In this review, we take a close molecular view of the underpinning molecular mechanisms of such complex intercellular communications. There are several studied forms of cell-to-cell communications considered crucial for the maintenance of multicellular organisms. The most explored is paracrine signalling which is realised through the release of diffusible signalling factors (e.g., hormones or growth factors) from a donor cell and taken up by a recipient cell. More challenging is communication which also does not require the direct contact of cells but is organised through the release of named signalling factors embedded in membranous structures. This mode of cell-to-cell communication is executed through the transfer of extracellular vesicles. Two other types of cellular cross-communication require direct contact of communicating cells. In one type, cells are connected by gap junctions which regulate permeation of chemical signals addressed to a neighbouring cell. Another type of cell communication is organised to provide a cytosolic continuum of adjacent cells joined by different tiny cell membrane extensions coined tunnelling nanotubes. In this review, we consider the various cell communication modes in the heart, and examples of processes in non-cardiac cells which may have mechanistic parallels with cardiovascular cells.


Assuntos
Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Junções Comunicantes/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
14.
Heart Lung Circ ; 23(10): 897-904, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043581

RESUMO

Vascular pathologies pose a significant health problem because of their wide prevalence and high impact on the rate of mortality. Blockade of blood flow in major blood vessels leads to ischaemia associated with oxidative stress, where mitochondria act as a major source of reactive oxygen species (ROS). While low levels of ROS perform a necessary function in normal cellular signalling and metabolism, elevated levels under pathological conditions are detrimental both at the cell and organ level. While cellular oxygenation is necessary to maintain tissue viability, a key pathological occurrence when restoring blood flow to ischaemic tissues is the subsequent burst of ROS generation following reoxygenation, resulting in a cascade of ROS-induced ROS release. This oxygen 'paradox' is a constraint in clinical practice, that is, the need for rapid and maximal restoration of blood flow while at the same time minimising the harmful impact of reperfusion injury on damaged tissues. Mitochondria play a central role in many signalling pathways, including cardioprotection against ischaemic injury and ROS signalling, thus the main target of any anti-ischaemic protective or post-injury therapeutic strategy should include mitochondria. At present, one of the most effective strategies that provide mitochondrial tolerance to ischaemia is ischaemic preconditioning. In addition, pharmacological preconditioning which mimics intrinsic natural protective mechanisms has proven effective at priming biological mechanisms to confront ischaemic damage. This review will discuss the role of mitochondria in contributing to acute ischaemia-reperfusion (IR) injury, and mechanisms of cardioprotection in respect to mitochondrial signalling pathways.


Assuntos
Precondicionamento Isquêmico Miocárdico/métodos , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Humanos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo
15.
Life Sci ; 338: 122359, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135115

RESUMO

AIM: Neonatal sepsis remains one of the most dangerous conditions in the neonatal intensive care units. One of the organs affected by sepsis is the kidney, making acute kidney injury (AKI) a common complication of sepsis. Treatment of sepsis almost always involves antibiotic therapy, which by itself may cause some adverse effects, including nephrotoxicity. We analyzed the mutual effect of antibiotic therapy and sepsis on AKI in an experimental and clinical study in infants and neonatal rats. MATERIALS AND METHODS: We evaluated the influence of therapy with different antibiotics on the appearance of AKI markers (blood urea nitrogen (BUN), neutrophil gelatinase-associated lipocalin (NGAL), clusterin, interleukin-18 (IL-18), kidney injury molecule-1 (KIM-1), monocyte chemoattractant protein 1 (MCP-1), calbindin, glutation-S-transferase subtype π (GST-π)) and liver injury markers in newborns with or without clinical signs of sepsis in the intensive care unit. In parallel, we analyzed the development of AKI in experimental lipopolysaccharide (LPS)-induced systemic inflammation in newborn rats accompanied by antibiotic therapy. KEY FINDINGS: We showed that therapy with metronidazole or ampicillin in combination with sulbactam had a beneficial effect in children with suspected sepsis, resulting in a decrease in AKI markers levels. However, treatment of newborns with netilmicin, cefepime, linezolid, or imipenem in combination with cilastatin worsened kidney function in these patients. SIGNIFICANCE: This prospective study indicates which antibiotics are preferable in neonatal sepsis and which should be used with caution in view of the risk of AKI development.


Assuntos
Injúria Renal Aguda , Sepse Neonatal , Sepse , Humanos , Lactente , Criança , Ratos , Animais , Sepse Neonatal/complicações , Sepse Neonatal/tratamento farmacológico , Estudos Prospectivos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Antibacterianos/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Biomarcadores
16.
Pharmaceutics ; 16(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38675106

RESUMO

There is an increasing accumulation of data on the exceptional importance of mitochondria in the occurrence and treatment of cancer, and in all lines of evidence for such participation, there are both energetic and non-bioenergetic functional features of mitochondria. This analytical review examines three specific features of adaptive mitochondrial changes in several malignant tumors. The first feature is characteristic of solid tumors, whose cells are forced to rebuild their energetics due to the absence of oxygen, namely, to activate the fumarate reductase pathway instead of the traditional succinate oxidase pathway that exists in aerobic conditions. For such a restructuring, the presence of a low-potential quinone is necessary, which cannot ensure the conventional conversion of succinate into fumarate but rather enables the reverse reaction, that is, the conversion of fumarate into succinate. In this scenario, complex I becomes the only generator of energy in mitochondria. The second feature is the increased proliferation in aggressive tumors of the so-called mitochondrial (peripheral) benzodiazepine receptor, also called translocator protein (TSPO) residing in the outer mitochondrial membrane, the function of which in oncogenic transformation stays mysterious. The third feature of tumor cells is the enhanced retention of certain molecules, in particular mitochondrially directed cations similar to rhodamine 123, which allows for the selective accumulation of anticancer drugs in mitochondria. These three features of mitochondria can be targets for the development of an anti-cancer strategy.

17.
Biochim Biophys Acta Mol Basis Dis ; 1869(3): 166622, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36526237

RESUMO

Acute kidney injury (AKI) is a frequent pathology with a high mortality rate after even a single AKI episode and a great risk of chronic kidney disease (CKD) development. To get insight into mechanisms of the AKI pathogenesis, there is a need to develop diverse experimental models of the disease. Photothrombosis is a widely used method for inducing ischemia in the brain. In this study, for the first time, we described photothrombosis-induced kidney ischemia as an appropriate model of AKI and obtained comprehensive characteristics of the photothrombotic lesion using micro-computed tomography (micro-CT) and histological techniques. In the ischemic area, we observed destruction of tubules, the loss of brush border and nuclei, connective tissue fibers disorganization, leukocyte infiltration, and hyaline casts formation. In kidney tissue and urine, we revealed increased levels in markers of proliferation and injury. The explicit long-term consequence of photothrombosis-induced kidney ischemia was renal fibrosis. Thus, we establish a new low invasive experimental model of AKI, which provides a reproducible local ischemic injury lesion. We propose our model of photothrombosis-induced kidney ischemia as a useful approach for investigating AKI pathogenesis, studying the mechanisms of kidney regeneration, and development of therapy against AKI and CKD.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Humanos , Rim/patologia , Microtomografia por Raio-X/efeitos adversos , Traumatismo por Reperfusão/patologia , Regeneração , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/patologia , Injúria Renal Aguda/patologia , Isquemia/patologia
18.
Antioxidants (Basel) ; 12(3)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36978894

RESUMO

The homeostasis of the transmembrane potential of hydrogen ions in mitochondria is a prerequisite for the normal mitochondrial functioning. However, in different pathological conditions it is advisable to slightly reduce the membrane potential, while maintaining it at levels sufficient to produce ATP that will ensure the normal functioning of the cell. A number of chemical agents have been found to provide mild uncoupling; however, natural proteins residing in mitochondrial membrane can carry this mission, such as proteins from the UCP family, an adenine nucleotide translocator and a dicarboxylate carrier. In this study, we demonstrated that the butyl ester of rhodamine 19, C4R1, binds to the components of the mitochondrial ATP synthase complex due to electrostatic interaction and has a good uncoupling effect. The more hydrophobic derivative C12R1 binds poorly to mitochondria with less uncoupling activity. Mass spectrometry confirmed that C4R1 binds to the ß-subunit of mitochondrial ATP synthase and based on molecular docking, a C4R1 binding model was constructed suggesting the binding site on the interface between the α- and ß-subunits, close to the anionic amino acid residues of the ß-subunit. The association of the uncoupling effect with binding suggests that the ATP synthase complex can provide induced uncoupling.

19.
FEBS J ; 289(18): 5697-5713, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35373508

RESUMO

Age-related impairment of coordination of the processes of maintaining mitochondrial homeostasis is associated with a decrease in the functionality of cells and leads to degenerative processes. mtDNA can be a marker of oxidative stress and tissue degeneration. However, the mechanism of accumulation of age-related damage in mtDNA remains unclear. In the present study, we analyzed the accumulation of mtDNA damage in several organs of rats during aging and the possibility of reversing these alterations by dietary restriction (DR). We showed that mtDNA of brain compartments (with the exception of the cerebellum), along with kidney mtDNA, was the most susceptible to accumulation of age-related damage, whereas liver, testis, and lung were the least susceptible organs. DR prevented age-related accumulation of mtDNA damage in the cortex and led to its decrease in the lung and testis. Changes in mtDNA copy number and expression of genes involved in the regulation of mitochondrial biogenesis and mitophagy were also tissue-specific. There was a tendency for an age-related decrease in the copy number of mtDNA in the striatum and its increase in the kidney. DR promoted an increase in the amount of mtDNA in the cerebellum and hippocampus. mtDNA damage may be associated not only with the metabolic activity of organs, but also with the lipid composition and activity of processes associated with the isoprostanes pathway of lipid peroxidation. The comparison of polyunsaturated fatty acids and oxylipin profiles in old rats showed that DR decreased the synthesis of arachidonic acid and its metabolites synthesized by the cyclooxygenase, cytochrome P450 monooxygenases and lipoxygenase metabolic pathways.


Assuntos
DNA Mitocondrial , Oxilipinas , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Ácidos Araquidônicos , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Isoprostanos , Lipoxigenases/genética , Lipoxigenases/metabolismo , Masculino , Estresse Oxidativo , Prostaglandina-Endoperóxido Sintases/genética , Ratos
20.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063923

RESUMO

The use of stem cells is part of a strategy for the treatment of a large number of diseases. However, the source of the original stem cells for use is extremely important and determines their therapeutic potential. Mesenchymal stromal cells (MSC) have proven their therapeutic effectiveness when used in a number of pathological models. However, it remains an open question whether the chronological age of the donor organism affects the effectiveness of the use of MSC. The asymmetric division of stem cells, the result of which is some residential stem cells acquiring a non-senile phenotype, means that stem cells possess an intrinsic ability to preserve juvenile characteristics, implying an absence or at least remarkable retardation of senescence in stem cells. To test whether residential MSC senesce, we evaluated the physiological changes in the MSC from old rats, with a further comparison of the neuroprotective properties of MSC from young and old animals in a model of traumatic brain injury. We found that, while the effect of administration of MSC on lesion volume was minimal, functional recovery was remarkable, with the highest effect assigned to fetal cells; the lowest effect was recorded for cells isolated from adult rats and postnatal cells, having intermediate potency. MSC from the young rats were characterized by a faster growth than adult MSC, correlating with levels of proliferating cell nuclear antigen (PCNA). However, there were no differences in respiratory activity of MSC from young and old rats, but young cells showed much higher glucose utilization than old ones. Autophagy flux was almost the same in both types of cells, but there were remarkable ultrastructural differences in old and young cells.


Assuntos
Fatores Etários , Células da Medula Óssea/citologia , Células-Tronco Mesenquimais/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Senescência Celular , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA