RESUMO
Prediction of catalytic reaction efficiency is one of the most intriguing and challenging applications of machine learning (ML) algorithms in chemistry. In this study, we demonstrated a strategy for utilizing ML protocols applied to Quantum Theory of Atoms In Molecules (QTAIM) parameters to predict the ability of the A17 L47K catalytic antibody to covalently capture organophosphate pesticides. We found that the novel "composite" DFT functional B97-3c could be effectively employed for fast and accurate initial geometry optimization, aligning well with the input dataset creation. QTAIM descriptors proved to be well-established in describing the examined dataset using density-based and hierarchical clustering algorithms. The obtained clusters exhibited correlations with the chemical classes of the input compounds. The precise physical interpretation of the QTAIM properties simplifies the explanation of feature impact for both supervised and unsupervised ML protocols. It also enables acceleration in the search for entries with desired properties within large databases. Furthermore, our findings indicated that Ridge Regression with Laplacian kernel and CatBoost Regressor algorithms demonstrated suitable performance in handling small datasets with non-trivial dependencies. They were able to predict the actual reaction barrier values with a high level of accuracy. Additionally, the CatBoost Classifier proved reliable in discriminating between "active" and "inactive" compounds.
RESUMO
Despite the development of numerous advanced ligands for Pd-catalyzed Suzuki cross-coupling reaction, the potential of (oligo)peptides serving as ligands remains unexplored. This study demonstrates via density functional theory (DFT) modeling that (oligo)peptide ligands can drive superior activity compared to classic phosphines in these reactions. The utilization of natural amino acids such as Met, SeMet, and His leads to strong binding of the Pd center, thereby ensuring substantial stability of the system. The increasing sustainability and economic viability of (oligo)peptide synthesis open new prospects for applying Pd-(oligo)peptide systems as greener catalysts. The feasibility of de novo engineering an artificial Pd-based enzyme for Suzuki cross-coupling is discussed, laying the groundwork for future innovations in catalytic systems.
Assuntos
Paládio , Paládio/química , Catálise , Peptídeos/química , Ligantes , Estrutura Molecular , Teoria da Densidade FuncionalRESUMO
The annual number of reported human cases of flavivirus infections continues to increase. Measures taken by local healthcare systems and international organizations are not fully successful. In this regard, new approaches to treatment and prevention of flavivirus infections are relevant. One promising approach is to use monoclonal antibody preparations. The mouse mAb 10H10 is capable of interacting with viruses belonging to the genus Orthoflavivirus which are pathogenic to humans. ELISA and molecular modeling data can indicate that mAb 10H10 recognizes the fusion loop region of E protein. The KD of interaction between the mAb 10H10 and recombinant analogs of the E protein of the tick-borne encephalitis (TBEV), Zika (ZIKV) and dengue (DENV) viruses range from 1.5 to 4 nM. The aim of this study was to map the epitope of this antibody using phage display technology. After three rounds of biopanning, 60 individual phage clones were chosen. The amino acid sequences of the selected peptides were conveniently divided into five groups. Based on the selected peptides, bacteriophages were obtained carrying peptides on the surfaces of the pIII and pVIII proteins, which were tested for binding to the antibody in ELISA. Thus, the epitope of the mAb 10H10 is the highly conserved region 98-DRGWGNXXGLFGK-110 of the flavivirus E protein. The structures of the complexes of the identified peptides with the antibody paratope are proposed using the molecular docking and dynamics methods.
Assuntos
Anticorpos Monoclonais , Epitopos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Epitopos/imunologia , Epitopos/química , Animais , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Zika virus/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/química , Humanos , Sequência de Aminoácidos , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Mapeamento de Epitopos/métodos , Técnicas de Visualização da Superfície Celular , Vírus da Dengue/imunologia , Biblioteca de Peptídeos , Modelos MolecularesRESUMO
A series of 13 new 3-substituted 5-(5-nitro-2-furyl)-1,2,4-oxadiazoles was synthesized from different aminonitriles. All compounds were screened in the disc diffusion test at a 100 µg/mL concentration to determine the bacterial growth inhibition zone presence and diameter, and then the minimum inhibitory concentrations (MICs) were determined for the most active compounds by serial dilution. The compounds showed antibacterial activity against ESKAPE bacteria, predominantly suppressing the growth of 5 species out of the panel. Some compounds had similar or lower MICs against ESKAPE pathogens compared to ciprofloxacin, nitrofurantoin, and furazidin. In particular, 3-azetidin-3-yl-5-(5-nitro-2-furyl)-1,2,4-oxadiazole (2h) inhibited S. aureus at a concentration lower than all comparators. Compound 2e (5-(5-nitro-2-furyl)-3-[4-(pyrrolidin-3-yloxy)phenyl]-1,2,4-oxadiazole) was active against Gram-positive ESKAPE pathogens as well as M. tuberculosis. Differences in the molecular periphery led to high selectivity for the compounds. The induced-fit docking (IFD) modeling technique was applied to in silico research. Molecular docking results indicated the targeting of compounds against various nitrofuran-associated biological targets.
Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Nitrofuranos , Nitrofuranos/farmacologia , Nitrofuranos/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Desenho de Fármacos , Relação Estrutura-Atividade , Oxidiazóis/química , Oxidiazóis/farmacologia , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacosRESUMO
Rapidly evolving RNA viruses continuously produce minority haplotypes that can become dominant if they are drug-resistant or can better evade the immune system. Therefore, early detection and identification of minority viral haplotypes may help to promptly adjust the patient's treatment plan preventing potential disease complications. Minority haplotypes can be identified using next-generation sequencing, but sequencing noise hinders accurate identification. The elimination of sequencing noise is a non-trivial task that still remains open. Here we propose CliqueSNV based on extracting pairs of statistically linked mutations from noisy reads. This effectively reduces sequencing noise and enables identifying minority haplotypes with the frequency below the sequencing error rate. We comparatively assess the performance of CliqueSNV using an in vitro mixture of nine haplotypes that were derived from the mutation profile of an existing HIV patient. We show that CliqueSNV can accurately assemble viral haplotypes with frequencies as low as 0.1% and maintains consistent performance across short and long bases sequencing platforms.
Assuntos
Algoritmos , Biologia Computacional/métodos , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Infecções por Vírus de RNA/diagnóstico , Vírus de RNA/genética , COVID-19/diagnóstico , COVID-19/virologia , Frequência do Gene , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , HIV-1/genética , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Infecções por Vírus de RNA/virologia , Reprodutibilidade dos Testes , SARS-CoV-2/genética , Sensibilidade e EspecificidadeRESUMO
Over the past decades, the problem of bacterial resistance to most antibiotics has become a serious threat to patients' survival. Nevertheless, antibiotics of a novel class have not been approved since the 1980s. The development of antibiotic potentiators is an appealing alternative to the challenging process of searching for new antimicrobials. Production of H2S-one of the leading defense mechanisms crucial for bacterial survival-can be influenced by the inhibition of relevant enzymes: bacterial cystathionine γ-lyase (bCSE), bacterial cystathionine ß-synthase (bCBS), or 3-mercaptopyruvate sulfurtransferase (MST). The first one makes the main contribution to H2S generation. Herein, we present data on the synthesis, in silico analyses, and enzymatic and microbiological assays of novel bCSE inhibitors. Combined molecular docking and molecular dynamics analyses revealed a novel binding mode of these ligands to bCSE. Lead compound 2a manifested strong potentiating activity when applied in combination with some commonly used antibiotics against multidrug-resistant Acinetobacter baumannii, Pseudomonas aeruginosa, and methicillin-resistant Staphylococcus aureus. The compound was found to have favorable in vitro absorption, distribution, metabolism, excretion, and toxicity parameters. The high effectiveness and safety of compound 2a makes it a promising candidate for enhancing the activity of antibiotics against high-priority pathogens.
Assuntos
Sulfeto de Hidrogênio , Staphylococcus aureus Resistente à Meticilina , Humanos , Antibacterianos/farmacologia , Sulfeto de Hidrogênio/metabolismo , Cistationina gama-Liase/metabolismo , Staphylococcus aureus Resistente à Meticilina/metabolismo , Pirróis/farmacologia , Simulação de Acoplamento Molecular , Bactérias/metabolismo , Indóis/farmacologia , Cistationina beta-Sintase/metabolismoRESUMO
A novel method for synthesizing 1,2,4-triazole- and tetrazole-containing 4H-thiopyrano[2,3-b]quinolines using a new combination of the thio-Michael and aza-Morita-Baylis-Hillman reactions was developed. Target compounds were evaluated for their cytotoxicities and antiviral activities against influenza A/Puerto Rico/8/34 virus in MDCK cells. The compounds showed low toxicity and some exhibited moderate antiviral activity. Molecular docking identified the M2 channel and polymerase basic protein 2 as potential targets. We observed that the antiviral activity of thiopyrano[2,3-b]quinolines is notably affected by both the nature and position of the substituent within the tetrazole ring, as well as the substituent within the benzene moiety of quinoline. These findings contribute to the further search for new antiviral agents against influenza A viruses among derivatives of thiopyrano[2,3-b]quinoline.
Assuntos
Quinolinas , Simulação de Acoplamento Molecular , Quinolinas/farmacologia , Antivirais/farmacologiaRESUMO
Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses' E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses' E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.
Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecções por Flavivirus , Anticorpos Neutralizantes , Anticorpos Antivirais , Reações Cruzadas , HumanosRESUMO
PCSK9 has now become an important target to create new classes of lipid-lowering drugs. The prevention of its interaction with LDL receptors allows an increase in the number of these receptors on the surface of the cell membrane of hepatocytes, which leads to an increase in the uptake of cholesterol-rich atherogenic LDL from the bloodstream. The PCSK9 antagonists described in this review belong to different classes of compounds, may have a low molecular weight or belong to macromolecular structures, and also demonstrate different mechanisms of action. The mechanisms of action include preventing the effective binding of PCSK9 to LDLR, stimulating the degradation of PCSK9, and even blocking its transcription or transport to the plasma membrane/cell surface. Although several types of antihyperlipidemic drugs have been introduced on the market and are actively used in clinical practice, they are not without disadvantages, such as well-known side effects (statins) or high costs (monoclonal antibodies). Thus, there is still a need for effective cholesterol-lowering drugs with minimal side effects, preferably orally bioavailable. Low-molecular-weight PCSK9 inhibitors could be a worthy alternative for this purpose.
Assuntos
Hipolipemiantes/farmacologia , Pró-Proteína Convertase 9 , Receptores de LDL/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Hipolipemiantes/química , Terapia de Alvo Molecular , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/fisiologiaRESUMO
Inhibition of human DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1) by different chiral lipophilic nucleoside derivatives was studied. New Tdp1 inhibitors were found in the series of the studied compounds with IC50 = 2.7-6.7 µM. It was shown that D-lipophilic nucleoside derivatives manifested higher inhibition activity than their L-analogs, and configuration of the carbohydrate moiety can influence the mechanism of Tdp1 inhibition.
Assuntos
Nucleosídeos , Diester Fosfórico Hidrolases , Humanos , Ligantes , Nucleosídeos/farmacologia , Diester Fosfórico Hidrolases/químicaRESUMO
Alpha-fetoprotein (AFP) is a major embryo- and tumor-associated protein capable of binding and transporting a variety of hydrophobic ligands, including estrogens. AFP has been shown to inhibit estrogen receptor (ER)-positive tumor growth, which can be attributed to its estrogen-binding ability. Despite AFP having long been investigated, its three-dimensional (3D) structure has not been experimentally resolved and molecular mechanisms underlying AFP-ligand interaction remains obscure. In our study, we constructed a homology-based 3D model of human AFP (HAFP) with the purpose of molecular docking of ERα ligands, three agonists (17ß-estradiol, estrone and diethylstilbestrol), and three antagonists (tamoxifen, afimoxifene and endoxifen) into the obtained structure. Based on the ligand-docked scoring functions, we identified three putative estrogen- and antiestrogen-binding sites with different ligand binding affinities. Two high-affinity binding sites were located (i) in a tunnel formed within HAFP subdomains IB and IIA and (ii) on the opposite side of the molecule in a groove originating from a cavity formed between domains I and III, while (iii) the third low-affinity binding site was found at the bottom of the cavity. Here, 100 ns molecular dynamics (MD) simulation allowed us to study their geometries and showed that HAFP-estrogen interactions were caused by van der Waals forces, while both hydrophobic and electrostatic interactions were almost equally involved in HAFP-antiestrogen binding. Molecular mechanics/Generalized Born surface area (MM/GBSA) rescoring method exploited for estimation of binding free energies (ΔGbind) showed that antiestrogens have higher affinities to HAFP as compared to estrogens. We performed in silico point substitutions of amino acid residues to confirm their roles in HAFP-ligand interactions and showed that Thr132, Leu138, His170, Phe172, Ser217, Gln221, His266, His316, Lys453, and Asp478 residues, along with two disulfide bonds (Cys224-Cys270 and Cys269-Cys277), have key roles in both HAFP-estrogen and HAFP-antiestrogen binding. Data obtained in our study contribute to understanding mechanisms underlying protein-ligand interactions and anticancer therapy strategies based on ERα-binding ligands.
Assuntos
Estradiol/metabolismo , Moduladores de Receptor Estrogênico/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , alfa-Fetoproteínas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Feminino , Humanos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese , Alinhamento de SequênciaRESUMO
MAIN CONCLUSION: The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.
Assuntos
Pisum sativum/enzimologia , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Rhizobium leguminosarum/fisiologia , Simbiose , Western Blotting , Engenharia Genética/métodos , Pisum sativum/microbiologia , Pisum sativum/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Técnicas do Sistema de Duplo-HíbridoRESUMO
Succinic semialdehyde dehydrogenase (SSADH) converts succinic semialdehyde (SSA) to succinic acid in the mitochondrial matrix and is involved in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA). The molecular structure of human SSADH revealed the intrinsic regulatory mechanism--redox-switch modulation--by which large conformational changes are brought about in the catalytic loop through disulfide bonding. The crystal structures revealed two SSADH conformations, and computational modeling of transformation between them can provide substantial insights into detailed dynamic redox modulation. On the basis of these two clear crystal structures, we modeled the conformational motion between these structures in silico. For that purpose, we proposed and used a geometry-based coarse-grained mathematical model of long-range protein motion and the related modeling algorithm. The algorithm is based on solving the special optimization problem, which is similar to the classical Monge-Kantorovich mass transportation problem. The modeled transformation was supported by another morphing method based on a completely different framework. The result of the modeling facilitates better interpretation and understanding of the SSADH biological role.
Assuntos
Modelos Moleculares , Succinato-Semialdeído Desidrogenase/química , Algoritmos , Domínio Catalítico , Dissulfetos/química , Humanos , Oxirredução , Conformação ProteicaRESUMO
Antipsychotic drugs or neuroleptics are widely used in the treatment of psychosis as a manifestation of schizophrenia and bipolar disorder. However, their effectiveness largely depends on the blood-brain barrier (BBB) permeation (pharmacokinetics) and drug-receptor pharmacodynamics. Therefore, in this study, we developed and implemented the in silico pipeline to design novel compounds (n = 260) as leads using the standard drug scaffolds with improved PK/PD properties from the standard scaffolds. As a result, the best candidates (n = 3) were evaluated in molecular docking to interact with serotonin and dopamine receptors. Finally, haloperidol (HAL) derivative (1-(4-fluorophenyl)-4-(4-hydroxy-4-{4-[(2-phenyl-1,3-thiazol-4-yl)methyl]phenyl}piperidin-1-yl)butan-1-one) was identified as a "magic shotgun" lead compound with better affinity to the 5-HT2A, 5-HT1D, D2, D3, and 5-HT1B receptors than the control molecule. Additionally, this hit substance was predicted to possess similar BBB permeation properties and much lower toxicological profiles in comparison to HAL. Overall, the proposed rational drug design platform for novel antipsychotic drugs based on the BBB permeation and receptor binding might be an invaluable asset for a medicinal chemist or translational pharmacologist.Communicated by Ramaswamy H. Sarma.
Assuntos
Antipsicóticos , Antipsicóticos/farmacologia , Barreira Hematoencefálica , Serotonina , Simulação de Acoplamento Molecular , Haloperidol/farmacologia , Haloperidol/metabolismoRESUMO
Dopamine receptor D3 (D3R) has gained attention as a promising therapeutic target for neurological disorders. In this study, an innovative in silico click reaction strategy was employed to identify potential D3R binders. The ligand template, 1-phenyl-4-[4-(1H-1,2,3-triazol-5-yl)butyl]piperazine, with substitution at the 1,2,3-triazole ring, served as the starting point. Generated compounds underwent filtration based on their brain-to-blood concentration ratio (logBB), leading to the identification of 1-{4-[1-(decahydronaphthalen-1-yl)-1H-1,2,3-triazol-5-yl]butyl}-4-phenylpiperazine as the most promising candidate, displaying superior D3R affinity and blood-brain barrier (BBB) permeability compared to the reference ligand, eticlopride. Molecular dynamics simulations further supported these findings. This study presents a novel hit for designing D3R ligands and establishes a workflow utilizing in silico click chemistry to screen compounds with BBB permeability. The proposed click reaction-based algorithm holds significant potential as a valuable tool in the development of effective antipsychotic compounds.
Assuntos
Antipsicóticos , Barreira Hematoencefálica , Ligantes , Barreira Hematoencefálica/metabolismo , Química Click , Receptores de Dopamina D3/química , Receptores de Dopamina D3/metabolismoRESUMO
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Filogenia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Bactérias/metabolismo , AntibacterianosRESUMO
Compounds that contain (R)-3-amino-4-(2,4,5-trifluorophenyl)butanoic acid substituted with bicyclic amino moiety (2-aza-bicyclo[2.2.1]heptane) were designed using molecular modelling methods, synthesised, and found to be potent DPP-4 (dipeptidyl peptidase-4) inhibitors. Compound 12a (IC50 = 16.8 ± 2.2 nM), named neogliptin, is a more potent DPP-4 inhibitor than vildagliptin and sitagliptin. Neogliptin interacts with key DPP-4 residues in the active site and has pharmacophore parameters similar to vildagliptin and sitagliptin. It was found to have a low cardiotoxic effect compared to sitagliptin, and it is superior to vildagliptin in terms of ADME properties. Moreover, compound 12a is stable in aqueous solutions due to its low intramolecular cyclisation potential. These findings suggest that compound 12a has unique properties and can act as a template for further type 2 diabetes mellitus drug development.
RESUMO
Myelodysplastic syndrome (MDS) refers to a heterogeneous group of closely related clonal hematopoietic disorders, which are characterized by accumulation of somatic mutations. The acquired mutation burden is suggested to define the pathway and consequent phenotype of the pathology. Recent studies have called attention to the role of miRNA biogenesis genes in MDS progression; in particular, the mutational pressure of the DROSHA gene was determined. Therefore, this highlights the importance of studying the impact of all collected missense mutations found within the DROSHA gene in oncohematology that might affect the functionality of the protein. In this study, the selected mutations were extensively examined by computational screening, and the most deleterious were subjected to a further molecular dynamic simulation in order to uncover the molecular mechanism of the structural damage to the protein altering its biological function. The most significant effect was found for variants I625K, L1047S, and H1170D, presumably affecting the endonuclease activity of DROSHA. Such alterations arisen during MDS progression should be taken into consideration as evoking certain clinical traits in the malignifying clonal evolution.
Assuntos
Mutação de Sentido Incorreto/genética , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Ribonuclease III/genética , Evolução Clonal/genética , Progressão da Doença , Endonucleases/genética , HumanosRESUMO
Investigation of the influence of molecular structure of different organic compounds on acute toxicity towards Fathead minnow, Daphnia magna, and Tetrahymena pyriformis has been carried out using 2D simplex representation of molecular structure and two modelling methods: Random Forest (RF) and Gradient Boosting Machine (GBM). Suitable QSAR (Quantitative Structure - Activity Relationships) models were obtained. The study was focused on QSAR models interpretation. The aim of the study was to develop a set of structural fragments that simultaneously consistently increase toxicity toward Fathead minnow, Daphnia magna, Tetrahymena pyriformis. The interpretation allowed to gain more details about known toxicophores and to propose new fragments. The results obtained made it possible to rank the contributions of molecular fragments to various types of toxicity to aquatic organisms. This information can be used for molecular optimization of chemicals. According to the results of structural interpretation, the most significant common mechanisms of the toxic effect of organic compounds on Fathead minnow, Daphnia magna and Tetrahymena pyriformis are reactions of nucleophilic substitution and inhibition of oxidative phosphorylation in mitochondria. In addition acetylcholinesterase and voltage-gated ion channel of Fathead minnow and Daphnia magna are important targets for toxicants. The on-line version of the OCHEM expert system (https://ochem.eu) were used for a comparative QSAR investigation. The proposed QSAR models comply with the OECD principles and can be used to reliably predict acute toxicity of organic compounds towards Fathead minnow, Daphnia magna and Tetrahymena pyriformis with allowance for applicability domain estimation.