Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cancer Cell Int ; 24(1): 56, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317193

RESUMO

BACKGROUND: About 30% of Prostate cancer (PCa) patients progress to metastatic PCa that remains largely incurable. This evidence underlines the need for the development of innovative therapies. In this direction, the potential research focus might be on long non-coding RNAs (lncRNAs) like H19, which serve critical biological functions and show significant dysregulation in cancer. Previously, we showed a transcriptional down-regulation of H19 under combined pro-tumoral estrogen and hypoxia treatment in PCa cells that, in turn, induced both E-cadherin and ß4 integrin expression. H19, indeed, acts as transcriptional repressor of cell adhesion molecules affecting the PCa metastatic properties. Here, we investigated the role of H19/cell adhesion molecules circuitry on in vivo PCa experimental tumor growth and metastatic dissemination models. METHODS: H19 was silenced in luciferase-positive PC-3 and 22Rv1 cells and in vitro effect was evaluated by gene expression, proliferation and invasion assays before and after treatment with the histone lysine demethylase inhibitor, GSK-J4. In vivo tumor growth and metastasis dissemination, in the presence or absence of GSK-J4, were analyzed in two models of human tumor in immunodeficient mice by in vivo bioluminescent imaging and immunohistochemistry (IHC) on explanted tissues. Organotypic Slice Cultures (OSCs) from fresh PCa-explant were used as ex vivo model to test GSK-J4 effects. RESULTS: H19 silencing in both PC-3 and 22Rv1 cells increased: i) E-cadherin and ß4 integrin expression as well as proliferation and invasion, ii) in vivo tumor growth, and iii) metastasis formation at bone, lung, and liver. Of note, treatment with GSK-J4 reduced lesions. In parallel, GSK-J4 efficiently induced cell death in PCa-derived OSCs. CONCLUSIONS: Our findings underscore the potential of the H19/cell adhesion molecules circuitry as a targeted approach in PCa treatment. Modulating this interaction has proven effective in inhibiting tumor growth and metastasis, presenting a logical foundation for targeted therapy.

2.
Mol Cell ; 61(3): 449-460, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26748828

RESUMO

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Biomarcadores Tumorais/deficiência , Quadruplex G/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Ácidos Picolínicos/farmacologia , Animais , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores Tumorais/genética , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Camundongos Nus , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Interferência de RNA , Telômero/efeitos dos fármacos , Telômero/genética , Telômero/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral/efeitos dos fármacos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563529

RESUMO

Self-assembling nanoparticles (SANPs) promise an effective delivery of bisphosphonates or microRNAs in the treatment of glioblastoma (GBM) and are obtained through the sequential mixing of four components immediately before use. The self-assembling approach facilitates technology transfer, but the complexity of the SANP preparation protocol raises significant concerns in the clinical setting due to the high risk of human errors during the procedure. In this work, it was hypothesized that the SANP preparation protocol could be simplified by using freeze-dried formulations. An in-depth thermodynamic study was conducted on solutions of different cryoprotectants, namely sucrose, mannitol and trehalose, to test their ability to stabilize the produced SANPs. In addition, the ability of SANPs to deliver drugs after lyophilization was assessed on selected formulations encapsulating zoledronic acid in vitro in the T98G GBM cell line and in vivo in an orthotopic mouse model. Results showed that, after lyophilization optimization, freeze-dried SANPs encapsulating zoledronic acid could retain their delivery ability, showing a significant inhibition of T98G cell growth both in vitro and in vivo. Overall, these results suggest that freeze-drying may help boost the industrial development of SANPs for the delivery of drugs to the brain.


Assuntos
Glioblastoma , Nanopartículas , Animais , Difosfonatos/farmacologia , Liofilização , Glioblastoma/tratamento farmacológico , Camundongos , Sacarose , Trealose , Ácido Zoledrônico
4.
J Hepatol ; 75(2): 351-362, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33741397

RESUMO

BACKGROUND & AIMS: About 15% of intrahepatic cholangiocarcinomas (iCCAs) express fibroblast growth factor receptor 2 (FGFR2) fusion proteins (FFs), usually alongside mutational inactivation of TP53, CDKN2A or BAP1. In FFs, FGFR2 residues 1-768 fuse to sequences encoded by a diverse array of partner genes (>60) causing oncogenic FF activation. While FGFR-specific tyrosine kinase inhibitors (F-TKI) provide clinical benefit in FF+ iCCA, responses are partial and/or limited by resistance mechanisms, such as the V565F substitution in the FGFR2 gatekeeper residue. Improving on FF targeting in iCCA therefore remains a critical unmet need. Herein, we aimed to generate a murine model of FF-driven iCCA and use this to uncover actionable FF-associated dependencies. METHODS: Four iCCA FFs carrying different fusion sequences were expressed in Tp53-/- mouse liver organoids. Tumorigenic properties of genetically modified liver organoids were assessed by transplantation into immuno-deficient mice. Cellular models derived from neoplastic lesions were exploited for pre-clinical studies. RESULTS: Transplantation of FF-expressing liver organoids yielded tumors diagnosed as CCA based on histological, phenotypic and transcriptomic analyses. The penetrance of this tumorigenic phenotype was influenced by FF identity. Tumor organoids and 2D cell lines derived from CCA lesions were addicted to FF signaling via Ras-Erk, regardless of FF identity or V565F mutation. Dual blockade of FF and the Ras-Erk pathway by concomitant pharmacological inhibition of FFs and Mek1/2 provided greater therapeutic efficacy than single agent F-TKI in vitro and in vivo. CONCLUSIONS: FF-driven iCCA pathogenesis was successfully modeled on a Tp53-/- murine background, revealing biological heterogeneity among structurally different FFs. Double blockade of FF-ERK signaling deserves consideration for precision-based approaches against human FF+ iCCA. LAY SUMMARY: Intrahepatic cholangiocarcinoma (iCCA) is a rare cancer that is difficult to treat. A subtype of iCCA is caused by genomic alterations that generate oncogenic drivers known as FGFR2 fusions. Patients with FGFR2 fusions respond to FGFR inhibitors, but clinical responses are often of modest duration. We used animal and cellular models to show that FGFR2 fusions require the activity of a downstream effector named Mek1/2. We found that dual blockade of FGFR2 fusions and Mek1/2 was more effective than isolated inhibition of FGFR2 fusions, pointing to the potential clinical utility of dual FGFR2-MEK1/2 blockade in patients with iCCA.


Assuntos
Colangiocarcinoma/etiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Proteína Supressora de Tumor p53/efeitos dos fármacos , Análise de Variância , Animais , Linhagem Celular/metabolismo , Colangiocarcinoma/genética , Modelos Animais de Doenças , Camundongos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Nucleic Acids Res ; 47(7): 3365-3382, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698737

RESUMO

The telomeric protein TRF2 is overexpressed in several human malignancies and contributes to tumorigenesis even though the molecular mechanism is not completely understood. By using a high-throughput approach based on the multiplexed Luminex X-MAP technology, we demonstrated that TRF2 dramatically affects VEGF-A level in the secretome of cancer cells, promoting endothelial cell-differentiation and angiogenesis. The pro-angiogenic effect of TRF2 is independent from its role in telomere capping. Instead, TRF2 binding to a distal regulatory element promotes the expression of SULF2, an endoglucosamine-6-sulfatase that impairs the VEGF-A association to the plasma membrane by inducing post-synthetic modification of heparan sulfate proteoglycans (HSPGs). Finally, we addressed the clinical relevance of our findings showing that TRF2/SULF2 expression is a worse prognostic biomarker in colorectal cancer (CRC) patients.


Assuntos
Neoplasias do Colo/metabolismo , Sulfotransferases/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/metabolismo , Heparina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Neovascularização Patológica , Sulfatases , Sulfotransferases/biossíntese , Proteína 2 de Ligação a Repetições Teloméricas/deficiência , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Hepatology ; 69(1): 131-142, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067876

RESUMO

About 15% of intrahepatic cholangiocarcinomas (ICCs) express constitutively active fibroblast growth factor receptor 2 (FGFR2) fusion proteins (FFs) generated by chromosomal translocations. FFs have been nominated as oncogenic drivers because administration of FGFR tyrosine kinase inhibitors (F-TKIs) can elicit meaningful objective clinical responses in patients carrying FF-positive ICC. Thus, optimization of FF targeting is a pressing clinical need. Herein, we report that three different FFs, previously isolated from ICC samples, are heat shock protein 90 (HSP90) clients and undergo rapid degradation upon HSP90 pharmacological blockade by the clinically advanced HSP90 inhibitor ganetespib. Combining catalytic suppression by the F-TKI BGJ398 with HSP90 blockade by ganetespib suppressed FGFR2-TACC3 (transforming acidic coiled-coil containing protein 3) signaling in cultured cells more effectively than either BGJ398 or ganetespib in isolation. The BGJ398 + ganetespib combo was also superior to single agents when tested in mice carrying subcutaneous tumors generated by transplantation of FGFR2-TACC3 NIH3T3 transformants. Of note, FF mutants known to enforce clinical resistance to BGJ398 in ICC patients retained full sensitivity to ganetespib in cultured cells. Conclusion: Our data provide a proof of principle that upfront treatment with the BGJ398 + ganetespib combo improves therapeutic targeting of FGFR2 fusions in an experimental setting, which may be relevant to precision medicine approaches to FF-driven ICC.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Colangiocarcinoma/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/metabolismo , Compostos de Fenilureia/administração & dosagem , Pirimidinas/administração & dosagem , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Triazóis/administração & dosagem , Animais , Células Cultivadas , Combinação de Medicamentos , Feminino , Humanos , Camundongos
7.
Nucleic Acids Res ; 44(4): 1579-90, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26511095

RESUMO

Cancer stem cells (CSCs) have been identified in several solid malignancies and are now emerging as a plausible target for drug discovery. Beside the questionable existence of CSCs specific markers, the expression of CD133 was reported to be responsible for conferring CSC aggressiveness. Here, we identified two G-rich sequences localized within the introns 3 and 7 of the CD133 gene able to form G-quadruplex (G4) structures, bound and stabilized by small molecules. We further showed that treatment of patient-derived colon CSCs with G4-interacting agents triggers alternative splicing that dramatically impairs the expression of CD133. Interestingly, this is strongly associated with a loss of CSC properties, including self-renewing, motility, tumor initiation and metastases dissemination. Notably, the effects of G4 stabilization on some of these CSC properties are uncoupled from DNA damage response and are fully recapitulated by the selective interference of the CD133 expression.In conclusion, we provided the first proof of the existence of G4 structures within the CD133 gene that can be pharmacologically targeted to impair CSC aggressiveness. This discloses a class of potential antitumoral agents capable of targeting the CSC subpopulation within the tumoral bulk.


Assuntos
Antígenos CD/genética , Quadruplex G , Glicoproteínas/genética , Invasividade Neoplásica/genética , Células-Tronco Neoplásicas/metabolismo , Peptídeos/genética , Antígeno AC133 , Antígenos CD/química , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/química , Humanos , Células-Tronco Neoplásicas/patologia , Peptídeos/química , Biossíntese de Proteínas
8.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1362-1370, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27838395

RESUMO

BACKGROUND: During the last decade, guanine G-rich sequences folding into G-quadruplex (G4) structures have received a lot of attention and their biological role is now a matter of large debate. Rising amounts of experimental evidence have validated several G-rich motifs as molecular targets in cancer treatment. Despite that an increasing number of small molecules has been reported to possess excellent G4 stabilizing properties, none of them has progressed through the drug-development pipeline due to their poor drug-like properties. In this context, the identification of G4 ligands with more favorable pharmacological properties and with a well-defined target activity could be fruitful for anticancer therapy application. SCOPE OF REVIEW: This manuscript outlines the current state of knowledge regarding EMICORON, a G4-interactive molecule structurally and biologically similar, on the one side, to coronene and, on the other side, to a bay-monosubstituted perylene. MAJOR CONCLUSIONS: Overall this work evidences that EMICORON, a new promising G4 ligand, possesses a marked antitumoral activity both standing alone and in combination with chemotherapeutics. Moreover, EMICORON represents a good example of multimodal class of antitumoral drug, able to simultaneously affect multiple targets participating in several distinct signaling pathways, thus simplifying the treatment modalities and improving the selectivity against cancer cells. GENERAL SIGNIFICANCE: Due to the importance of G4 forming sequences in crucial biological processes participating in tumor progression, their successful targeting with small molecules could represent a very important innovation in the development of effective therapeutic strategies against cancer. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , DNA de Neoplasias/efeitos dos fármacos , Desenho de Fármacos , Quadruplex G/efeitos dos fármacos , Guanosina/metabolismo , Imidas/farmacologia , Neoplasias/tratamento farmacológico , Piperidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/química , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Guanosina/química , Humanos , Imidas/síntese química , Imidas/metabolismo , Ligantes , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Piperidinas/síntese química , Piperidinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Telômero/química , Telômero/efeitos dos fármacos , Telômero/metabolismo , Carga Tumoral/efeitos dos fármacos
9.
Nucleic Acids Res ; 43(3): 1759-69, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25618850

RESUMO

Here, with the aim of obtaining insight into the intriguing selectivity of G-quadruplex (G4) ligands toward cancer compared to normal cells, a genetically controlled system of progressive transformation in human BJ fibroblasts was analyzed. Among the different comparative evaluations, we found a progressive increase of DNA damage response (DDR) markers throughout the genome from normal toward immortalized and transformed cells. More interestingly, sensitivity to G4 ligands strongly correlated with the presence of a basal level of DNA damage, including at the telomeres, where the chromosome ends were exposed to the DDR without concurrent induction of DNA repair activity, as revealed by the lack of 53BP1 recruitment and telomere aberrations. The link between telomere uncapping and the response to G4 stabilization was directly assessed by showing that a partial TRF2 depletion, causing a basal level of telomere localized DDR, rendered telomerized fibroblasts prone to G4-induced telomere damage and anti-proliferative defects. Taken together these data strongly indicate that the presence of a basal level of telomere-associated DDR is a determinant of susceptibility to G4 stabilization.


Assuntos
Dano ao DNA , Quadruplex G/efeitos dos fármacos , Neoplasias/genética , Telômero , Western Blotting , Imunoprecipitação da Cromatina , Humanos , Hibridização in Situ Fluorescente , Células Tumorais Cultivadas
10.
Nucleic Acids Res ; 42(5): 2945-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24335081

RESUMO

Tumor angiogenesis is mainly mediated by vascular endothelial growth factor (VEGF), a pro-angiogenic factor produced by cancer cells and active on the endothelium through the VEGF receptor 2 (VEGFR-2). Here we identify a G-rich sequence within the proximal promoter region of vegfr-2, able to form an antiparallel G-quadruplex (G4) structure. This G4 structure can be efficiently stabilized by small molecules with the consequent inhibition of vegfr-2 expression. Functionally, the G4-mediated reduction of VEGFR-2 protein causes a switching off of signaling components that, converging on actin cytoskeleton, regulate the cellular events leading to endothelial cell proliferation, migration and differentiation. As a result of endothelial cell function impairment, angiogenic process is strongly inhibited by G4 ligands both in vitro and in vivo. Interestingly, the G4-mediated antiangiogenic effect seems to recapitulate that observed by using a specific interference RNA against vegfr-2, and it is strongly antagonized by overexpressing the vegfr-2 gene. In conclusion, we describe the evidence for the existence of G4 in the promoter of vegfr-2, whose expression and function can be markedly inhibited by G4 ligands, thereby revealing a new, and so far undescribed, way to block VEGFR-2 as target for anticancer therapy.


Assuntos
Quadruplex G , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Regiões Promotoras Genéticas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
11.
J Exp Clin Cancer Res ; 43(1): 75, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459559

RESUMO

BACKGROUND: Breast Cancer (BC) can be classified, due to its heterogeneity, into multiple subtypes that differ for prognosis and clinical management. Notably, triple negative breast cancer (TNBC) - the most aggressive BC form - is refractory to endocrine and most of the target therapies. In this view, taxane-based therapy still represents the elective strategy for the treatment of this tumor. However, due variability in patients' response, management of TNBC still represents an unmet medical need. Telomeric Binding Factor 2 (TRF2), a key regulator of telomere integrity that is over-expressed in several tumors, including TNBC, has been recently found to plays a role in regulating autophagy, a degradative process that is involved in drug detoxification. Based on these considerations, we pointed, here, at investigating if TRF2, regulating autophagy, can affect tumor sensitivity to therapy. METHODS: Human TNBC cell lines, over-expressing or not TRF2, were subjected to treatment with different taxanes and drug efficacy was tested in terms of autophagic response and cell proliferation. Autophagy was evaluated first biochemically, by measuring the levels of LC3, and then by immunofluorescence analysis of LC3-puncta positive cells. Concerning the proliferation, cells were subjected to colony formation assays associated with western blot and FACS analyses. The obtained results were then confirmed also in mouse models. Finally, the clinical relevance of our findings was established by retrospective analysis on a cohort of TNBC patients subjected to taxane-based neoadjuvant chemotherapy. RESULTS: This study demonstrated that TRF2, inhibiting autophagy, is able to increase the sensitivity of TNBC cells to taxanes. The data, first obtained in in vitro models, were then recapitulated in preclinical mouse models and in a cohort of TNBC patients, definitively demonstrating that TRF2 over-expression enhances the efficacy of taxane-based neoadjuvant therapy in reducing tumor growth and its recurrence upon surgical intervention. CONCLUSIONS: Based on our finding it is possible to conclude that TRF2, already known for its role in promoting tumor formation and progression, might represents an Achilles' heel for cancer. In this view, TRF2 might be exploited as a putative biomarker to predict the response of TNBC patients to taxane-based neoadjuvant chemotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Estudos Retrospectivos , Taxoides/farmacologia , Taxoides/uso terapêutico , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Hidrocarbonetos Aromáticos com Pontes/uso terapêutico , Linhagem Celular Tumoral
12.
Aging Cell ; 22(11): e13944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858982

RESUMO

Drug repositioning strategy represents a valid tool to accelerate the pharmacological development through the identification of new applications for already existing compounds. In this view, we aimed at discovering molecules able to trigger telomere-localized DNA damage and tumor cell death. By applying an automated high-content spinning-disk microscopy, we performed a screening aimed at identifying, on a library of 527 drugs, molecules able to negatively affect the expression of TRF2, a key protein in telomere maintenance. FK866, resulting from the screening as the best candidate hit, was then validated at biochemical and molecular levels and the mechanism underlying its activity in telomere deprotection was elucidated both in vitro and in vivo. The results of this study allow us to discover a novel role of FK866 in promoting, through the production of reactive oxygen species, telomere loss and deprotection, two events leading to an accumulation of DNA damage and tumor cell death. The ability of FK866 to induce telomere damage and apoptosis was also demonstrated in advanced preclinical models evidencing the antitumoral activity of FK866 in triple-negative breast cancer-a particularly aggressive breast cancer subtype still orphan of targeted therapies and characterized by high expression levels of both NAMPT and TRF2. Overall, our findings pave the way to the development of novel anticancer strategies to counteract triple-negative breast cancer, based on the use of telomere deprotecting agents, including NAMPT inhibitors, that would rapidly progress from bench to bedside.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Reposicionamento de Medicamentos , Morte Celular , Apoptose , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral
13.
Neoplasia ; 45: 100937, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769528

RESUMO

The therapeutic scenario of Human Epidermal Growth Factor Receptor 2 positive advanced breast cancer (ABC) has been recently enriched by a number of innovative agents, which are reshaping treatment sequence. While randomized trials have documented an advantage in terms of efficacy, for the newly available agents we lack effectiveness and tolerability evidence from the real-world setting. Similarly, the identification of predictive biomarkers might improve clinical decision. We herein describe the outline of a prospective/retrospective study which aims to explore the optimal sequence of treatment in HER2+, pertuzumab pre-treated ABC patients treated in II line with anti-HER2 agents in clinical practice. As part of the pre-clinical tasks envisioned by the STEP study, in vitro cell models of resistance were exploited to investigate molecular features associated with reduced efficacy of HER2 targeting agents at the transcript level. The aggressive behavior of resistant cell populations was measured by growth assessment in mouse models. This approach led to the identification of DARPP-32 and t-DARPP proteins as possible predictive biomarkers of efficacy of anti-HER2 agents. Biomarkers validation and the clinical goals will be reached through patients' inclusion into two independent cohorts, i.e., the prospective and retrospective cohorts, whose setup is currently ongoing.


Assuntos
Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Trastuzumab/uso terapêutico , Estudos Retrospectivos , Estudos Prospectivos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina , Biomarcadores , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica
14.
Mol Ther Nucleic Acids ; 33: 127-141, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37449042

RESUMO

Nanodiamonds are innovative nanocrystalline carbon particles able to deliver chemically conjugated miRNAs. In oncology, the use of miRNA-based therapies may represent an advantage, based on their ability to simultaneously target multiple intracellular oncogenic targets. Here, nanodiamonds were tested and optimized to deliver miR-34a, a miRNA playing a key role in inhibiting tumor development and progression in many cancers. The physical-chemical properties of nanodiamonds were investigated suggesting electrical stability and uniformity of structure and size. Moreover, we evaluated nanodiamond cytotoxicity on two breast cancer cell models and confirmed their excellent biocompatibility. Subsequently, nanodiamonds were conjugated with miR-34a, using the chemical crosslinker polyethyleneimine; real-time PCR analysis revealed a higher level of miR-34a in cancer cells treated with the different formulations of nanodiamonds than with commercial transfectant. A significant and early nanodiamond-miR-34a uptake was recorded by FACS and fluorescence microscopy analysis in MCF7 and MDA-MB-231 cells. Moreover, nanodiamond-miR-34a significantly inhibited both cell proliferation and migration. Finally, a remarkable anti-tumor effect of miR-34a-conjugated nanodiamonds was observed in both heterotopic and orthotopic murine xenograft models. In conclusion, this study provides a rationale for the development of new therapeutic strategies based on use of miR-34a delivered by nanodiamonds to improve the clinical treatment of neoplasms.

15.
EMBO Mol Med ; 15(1): e16033, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36426578

RESUMO

The telomeric repeat-binding factor 2 (TRF2) is a telomere-capping protein that plays a key role in the maintenance of telomere structure and function. It is highly expressed in different cancer types, and it contributes to cancer progression. To date, anti-cancer strategies to target TRF2 remain a challenge. Here, we developed a miRNA-based approach to reduce TRF2 expression. By performing a high-throughput luciferase screening of 54 candidate miRNAs, we identified miR-182-3p as a specific and efficient post-transcriptional regulator of TRF2. Ectopic expression of miR-182-3p drastically reduced TRF2 protein levels in a panel of telomerase- or alternative lengthening of telomeres (ALT)-positive cancer cell lines. Moreover, miR-182-3p induced DNA damage at telomeric and pericentromeric sites, eventually leading to strong apoptosis activation. We also observed that treatment with lipid nanoparticles (LNPs) containing miR-182-3p impaired tumor growth in triple-negative breast cancer (TNBC) models, including patient-derived tumor xenografts (PDTXs), without affecting mouse survival or tissue function. Finally, LNPs-miR-182-3p were able to cross the blood-brain barrier and reduce intracranial tumors representing a possible therapeutic option for metastatic brain lesions.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Telômero/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
16.
EMBO Mol Med ; 14(3): e14501, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35107878

RESUMO

The cells with compromised BRCA1 or BRCA2 (BRCA1/2) function accumulate stalled replication forks, which leads to replication-associated DNA damage and genomic instability, a signature of BRCA1/2-mutated tumours. Targeted therapies against BRCA1/2-mutated tumours exploit this vulnerability by introducing additional DNA lesions. Because homologous recombination (HR) repair is abrogated in the absence of BRCA1 or BRCA2, these lesions are specifically lethal to tumour cells, but not to the healthy tissue. Ligands that bind and stabilise G-quadruplexes (G4s) have recently emerged as a class of compounds that selectively eliminate the cells and tumours lacking BRCA1 or BRCA2. Pyridostatin is a small molecule that binds G4s and is specifically toxic to BRCA1/2-deficient cells in vitro. However, its in vivo potential has not yet been evaluated. Here, we demonstrate that pyridostatin exhibits a high specific activity against BRCA1/2-deficient tumours, including patient-derived xenograft tumours that have acquired PARP inhibitor (PARPi) resistance. Mechanistically, we demonstrate that pyridostatin disrupts replication leading to DNA double-stranded breaks (DSBs) that can be repaired in the absence of BRCA1/2 by canonical non-homologous end joining (C-NHEJ). Consistent with this, chemical inhibitors of DNA-PKcs, a core component of C-NHEJ kinase activity, act synergistically with pyridostatin in eliminating BRCA1/2-deficient cells and tumours. Furthermore, we demonstrate that pyridostatin triggers cGAS/STING-dependent innate immune responses when BRCA1 or BRCA2 is abrogated. Paclitaxel, a drug routinely used in cancer chemotherapy, potentiates the in vivo toxicity of pyridostatin. Overall, our results demonstrate that pyridostatin is a compound suitable for further therapeutic development, alone or in combination with paclitaxel and DNA-PKcs inhibitors, for the benefit of cancer patients carrying BRCA1/2 mutations.


Assuntos
Quadruplex G , Neoplasias , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2 , Reparo do DNA , Humanos , Ligantes , Neoplasias/tratamento farmacológico , Ácidos Picolínicos
17.
Cancer Lett ; 533: 215607, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35240232

RESUMO

The Telomeric Repeat binding Factor 2 (TRF2), a key protein involved in telomere integrity, is over-expressed in several human cancers and promotes tumor formation and progression. Recently, TRF2 has been also found outside telomeres where it can affect gene expression. Here we provide evidence that TRF2 is able to modulate the expression of microRNAs (miRNAs), small non-coding RNAs altered in human tumors. Among the miRNAs regulated by TRF2, we focused on miR-193b-3p, an oncomiRNA that positively correlates with TRF2 expression in human colorectal cancer patients from The Cancer Genome Atlas dataset. At the mechanistic level, the control of miR-193b-3p expression requires the cooperative activity between TRF2 and the chromatin organization factor CTCF. We found that CTCF physically interacts with TRF2, thus driving the proper positioning of TRF2 on a binding site located upstream the miR-193b-3p host-gene. The binding of TRF2 on the identified region is necessary for promoting the expression of miR-193b3p which, in turn, inhibits the translation of the onco-suppressive methyltransferase SUV39H1 and promotes tumor cell proliferation. The translational relevance of the oncogenic properties of miR-193b-3p was confirmed in patients, in whom the association between TRF2 and miR-193b-3p has a prognostic value.


Assuntos
Neoplasias Colorretais , MicroRNAs , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Oncogenes , Prognóstico
18.
Nucleic Acids Res ; 37(16): 5353-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19596811

RESUMO

Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.


Assuntos
Acridinas/farmacologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Telômero/efeitos dos fármacos , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Humanos , Ligantes , Transdução de Sinais , Telômero/química , Telômero/metabolismo
19.
J Exp Clin Cancer Res ; 40(1): 364, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34784956

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and lethal malignant tumours worldwide. Sorafenib (SOR) is one of the most effective single-drug systemic therapy against advanced HCC, but the identification of novel combination regimens for a continued improvement in overall survival is a big challenge. Recent studies highlighted the crucial role of focal adhesion kinase (FAK) in HCC growth. The aim of this study was to investigate the antitumor effects of three different FAK inhibitors (FAKi), alone or in combination with SOR, using in vitro and in vivo models of HCC. METHODS: The effect of PND1186, PF431396, TAE226 on cell viability was compared to SOR. Among them TAE226, emerging as the most effective FAKi, was tested alone or in combination with SOR using 2D/3D human HCC cell line cultures and HCC xenograft murine models. The mechanisms of action were assessed by gene/protein expression and imaging approaches, combined with high-throughput methods. RESULTS: TAE226 was the more effective FAKi to be combined with SOR against HCC. Combined TAE226 and SOR treatment reduced HCC growth both in vitro and in vivo by affecting tumour-promoting gene expression and inducing epigenetic changes via dysregulation of FAK nuclear interactome. We characterized a novel nuclear functional interaction between FAK and the NuRD complex. TAE226-mediated FAK depletion and SOR-promoted MAPK down-modulation caused a decrease in the nuclear amount of HDAC1/2 and a consequent increase of the histone H3 lysine 27 acetylation, thus counteracting histone H3 lysine 27 trimethylation. CONCLUSIONS: Altogether, our findings provide the first evidence that TAE226 combined with SOR efficiently reduces HCC growth in vitro and in vivo. Also, our data highlight that deep analysis of FAK nuclear interactome may lead to the identification of new promising targets for HCC therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Epigênese Genética/genética , Neoplasias Hepáticas/tratamento farmacológico , Morfolinas/uso terapêutico , Sorafenibe/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Morfolinas/farmacologia , Sorafenibe/farmacologia
20.
Cancers (Basel) ; 12(7)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650388

RESUMO

Metastatic colorectal cancer (mCRC) remains challenging because of the emergence of resistance mechanisms to anti-epidermal growth factor receptor (EGFR) therapeutics, so more effective strategies to improve the patients' outcome are needed. During the last decade, the application of a multi-omics approach has contributed to a deeper understanding of the complex molecular landscape of human CRC, identifying a plethora of drug targets for precision medicine. Target validation relies on the use of experimental models that would retain the molecular and clinical features of human colorectal cancer, thus mirroring the clinical characteristics of patients. In particular, organoids and patient-derived-xenografts (PDXs), as well as genetically engineered mouse models (GEMMs) and patient-derived orthotopic xenografts (PDOXs), should be considered for translational purposes. Overall, omics and advanced mouse models of cancer represent a portfolio of sophisticated biological tools that, if optimized for use in concert with accurate data analysis, could accelerate the anticancer discovery process and provide new weapons against cancer. In this review, we highlight success reached following the integration of omics and experimental models; moreover, results produced by our group in the field of mCRC are also presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA