Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Annu Rev Microbiol ; 71: 349-369, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28657886

RESUMO

The human intestine harbors a dense microbial ecosystem (microbiota) that is different between individuals, dynamic over time, and critical for aspects of health and disease. Dietary polysaccharides directly shape the microbiota because of a gap in human digestive physiology, which is equipped to assimilate only proteins, lipids, simple sugars, and starch, leaving nonstarch polysaccharides as major nutrients reaching the microbiota. A mutualistic role of gut microbes is to digest dietary complex carbohydrates, liberating host-absorbable energy via fermentation products. Emerging data indicate that polysaccharides play extensive roles in host-gut microbiota symbiosis beyond dietary polysaccharide digestion, including microbial interactions with endogenous host glycans and the importance of microbial polysaccharides. In this review, we consider multiple mechanisms through which polysaccharides mediate aspects of host-microbe symbiosis in the gut, including some affecting health. As host and microbial metabolic pathways are intimately connected with diet, we highlight the potential to manipulate this system for health.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Microbioma Gastrointestinal , Microbiota , Polissacarídeos/metabolismo , Simbiose , Humanos , Redes e Vias Metabólicas
2.
J Immunol ; 204(4): 1035-1046, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31900343

RESUMO

Bacteria express multiple diverse capsular polysaccharides (CPSs) for protection against environmental and host factors, including the host immune system. Using a mouse TCR transgenic CD4+ T cell, BθOM, that is specific for B. thetaiotaomicron and a complete set of single CPS-expressing B. thetaiotaomicron strains, we ask whether CPSs can modify the immune responses to specific bacterial Ags. Acapsular B. thetaiotaomicron, which lacks all B. thetaiotaomicron CPSs, stimulated BθOM T cells more strongly than wild-type B. thetaiotaomicron Despite similar levels of BθOM Ag expression, many single CPS-expressing B. thetaiotaomicron strains were antistimulatory and weakly activated BθOM T cells, but a few strains were prostimulatory and strongly activated BθOM T cells just as well or better than an acapsular strain. B. thetaiotaomicron strains that expressed an antistimulatory CPS blocked Ag delivery to the immune system, which could be rescued by Fc receptor-dependent Ab opsonization. All single CPS-expressing B. thetaiotaomicron strains stimulated the innate immune system to skew toward M1 macrophages and release inflammatory cytokines in an MyD88-dependent manner, with antistimulatory CPS activating the innate immune system in a weaker manner than prostimulatory CPS. The expression of antistimulatory versus prostimulatory CPSs on outer membrane vesicles also regulated immune responses. Moreover, antistimulatory and prostimulatory single CPS-expressing B. thetaiotaomicron strains regulated the activation of Ag-specific and polyclonal T cells as well as clearance of dominant Ag in vivo. These studies establish that the immune responses to specific bacterial Ags can be modulated by a diverse set of CPSs.


Assuntos
Antígenos de Bactérias/imunologia , Bacteroides thetaiotaomicron/imunologia , Microbioma Gastrointestinal/imunologia , Mucosa Intestinal/imunologia , Polissacarídeos Bacterianos/metabolismo , Animais , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/citologia , Bacteroides thetaiotaomicron/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Homeodomínio/genética , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade nas Mucosas , Mucosa Intestinal/citologia , Mucosa Intestinal/microbiologia , Ativação Linfocitária , Camundongos , Camundongos Knockout , Polissacarídeos Bacterianos/imunologia , Simbiose/imunologia
3.
Anal Chem ; 93(17): 6739-6745, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33885280

RESUMO

This paper compares static (i.e., temporally unchanging) thermal gradient gas chromatography (GC) to isothermal GC using a stochastic transport model to simulate peak characteristics for the separation of C12-C14 hydrocarbons resulting from variations in injection bandwidth. All comparisons are made using chromatographic conditions that give approximately equal analyte retention times so that the resolution and number of theoretical plates can be clearly compared between simulations. Simulations show that resolution can be significantly improved using a linear thermal gradient along the entire column length. This is mainly achieved by partially compensating for loss in resolution from the increase in mobile phase velocity, which approximates an ideal, basic separation. The slope of the linear thermal gradient required to maximize resolution is a function of the retention parameters, which are specific to each analyte pair; a single static, thermal gradient will not affect all analytes equally. A static, non-linear thermal gradient that creates constant analyte velocities at all column locations provides the largest observed gains in resolution. From the simulations performed in this study, optimized linear thermal gradient conditions are shown to improve the resolution by as much as 8.8% over comparative isothermal conditions, even with a perfect injection (i.e., zero initial bandwidth).

4.
Nature ; 517(7533): 165-169, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25567280

RESUMO

Yeasts, which have been a component of the human diet for at least 7,000 years, possess an elaborate cell wall α-mannan. The influence of yeast mannan on the ecology of the human microbiota is unknown. Here we show that yeast α-mannan is a viable food source for the Gram-negative bacterium Bacteroides thetaiotaomicron, a dominant member of the microbiota. Detailed biochemical analysis and targeted gene disruption studies support a model whereby limited cleavage of α-mannan on the surface generates large oligosaccharides that are subsequently depolymerized to mannose by the action of periplasmic enzymes. Co-culturing studies showed that metabolism of yeast mannan by B. thetaiotaomicron presents a 'selfish' model for the catabolism of this difficult to breakdown polysaccharide. Genomic comparison with B. thetaiotaomicron in conjunction with cell culture studies show that a cohort of highly successful members of the microbiota has evolved to consume sterically-restricted yeast glycans, an adaptation that may reflect the incorporation of eukaryotic microorganisms into the human diet.


Assuntos
Bacteroidetes/metabolismo , Trato Gastrointestinal/microbiologia , Mananas/metabolismo , Modelos Biológicos , Leveduras/química , Animais , Bacteroidetes/citologia , Bacteroidetes/enzimologia , Bacteroidetes/genética , Evolução Biológica , Configuração de Carboidratos , Dieta , Enzimas/genética , Enzimas/metabolismo , Feminino , Loci Gênicos/genética , Vida Livre de Germes , Glicoproteínas/química , Glicoproteínas/metabolismo , Humanos , Masculino , Mananas/química , Manose/metabolismo , Camundongos , Modelos Moleculares , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Periplasma/enzimologia
6.
Phytochem Anal ; 26(6): 395-403, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26095961

RESUMO

INTRODUCTION: Understanding the complex chemical signalling of plants and insects is an important component of chemical ecology. Accordingly, the collection and analysis of chemical cues from plants in their natural environment is integral to elucidation of plant-insect communications. Remote plant locations and the need for a large number of replicates make in situ headspace analyses a daunting logistical challenge. A hand-held, portable GC-MS system was used to discriminate between damaged and undamaged Centaurea solstitialis (yellow starthistle) flower heads in both a potted-plant and natural setting. OBJECTIVE: To determine if a portable GC-MS system was capable of distinguishing between undamaged and mechanically damaged plant treatments, and plant environments. METHODOLOGY: A portable GC-MS utilising needle trap adsorbent technology was used to collect and analyse in situ headspace volatiles of varying yellow starthistle treatments. Principal component analysis (PCA) was used to distinguish treatments and identify biomarker volatiles. Analysis of variance (ANOVA) was used to determine differences between treatment volatile amounts. RESULTS: The portable GC-MS system detected 31 volatiles from the four treatments. Each GC-MS run was completed in less than 3 min. PCA showed four distinct clusters representing the four treatments - damaged and undamaged potted plant, and damaged and undamaged natural plant. Damage-specific volatiles were identified. CONCLUSION: The portable GC-MS system distinguished the treatments based on their detected volatile profiles. Additional statistical analysis identified five possible biomarker volatiles for the treatments, among them cyclosativene and copaene, which indicated damaged flower heads.


Assuntos
Centaurea/química , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Inflorescência/química , Compostos Orgânicos Voláteis/análise , Meio Ambiente , Inflorescência/crescimento & desenvolvimento , Anafilaxia Cutânea Passiva
7.
Acc Chem Res ; 46(8): 1867-77, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23461578

RESUMO

Due to the increasing worldwide energy demand and environ-mental concerns, the need for alternative energy sources is growing stronger, and platinum catalysts in fuel cells may help make the technologies a reality. However, the pursuit of highly active Pt-based electrocatalysts continues to be a challenge. Scientists developing electrocatalysts continue to focus on characterizing and directing the construction of nanocrystals and advancing their electrochemical applications. Although chemists have worked on Pt-based bimetallic (Pt-M) preparations in the past, more recent research shows that both shape-controlled Pt-M nanocrystals and the assembly of these nanocrystals into supercrystals are promising new directions. A solution-based synthesis approach is an effective technique for preparing crystallographic facet-directed nanocatalysts. This is aided by careful selection of the metal precursor, capping ligand, reducing agent, and solvent. Incorporating a secondary metal M into the Pt lattice and manipulating the crystal facets on the surface cooperatively alter the electrocatalytic behavior of these Pt-M bimetallic nanocrystals. Specifically, chemists have extensively studied the {111}- and {100}-terminated crystal facets because they show unique atomic arrangement on surfaces, exhibit different catalytic performance, and possess specific resistance to toxic adsorbed carbon monoxide (COads). For catalysts to have maximum efficiency, they need to have resistance to COads and other poisonous carbon-containing intermediates when the catalysts operate under harsh conditions. A necessary design to any synthesis is to clearly understand and utilize the role of each component in order to successfully induce shape-controlled growth. Since chemists began to understand Pt nanocrystal shape-dependent electrocatalytic activity, the main obstacles blocking proton exchange membrane fuel cells are anode poisoning, sluggish kinetics at the cathode, and low activity. In this Account, we discuss the basic concepts in preparation of Pt-M bimetallic nanocrystals, focusing on several immaculate examples of manipulation at the nanoscale. We briefly introduce the prospects for applying Pt-M nanocrystals as electrocatalysts based on the electronic and geometric standpoints. In addition, we discuss several key parameters in the solution-based synthesis approach commonly used to facilitate Pt-M nanocrystals, such as reaction temperature and time, the combination of organic amines and acids, gaseous adsorbates, anionic species, and solvent. Each example features various nanoscale morphologies, such as spheres, cubes, octahedrons, and tetrahedrons. Additionally, we outline and review the superior electrocatalytic performances of the recently developed high-index Pt-M nanostructures. Next, we give examples of the electrocatalytic capabilities from these shape-defined Pt-M architectures by highlighting significant accomplishments in specific systems. Then, using several typical cases, we summarize electrochemical evaluations on the Pt-based shape-/composition-dependent nanocatalysts toward reactions on both the anode and the cathode. Lastly, we provide an outlook of current challenges and promising directions for shape-controlled Pt-M bimetallic electrocatalysts.

8.
Chemistry ; 20(6): 1753-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24382713

RESUMO

We report a facile synthesis route to prepare high-quality Pt3Co nanocubes with a concave structure, and further demonstrate that these concave Pt3Co nanocubes are terminated with high-index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high-index planes by control binding of oleyl-amine/oleic acid with a fine-tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt3Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high-index crystallographic planes exhibit an enhanced catalytic activity in comparison with low-indexed surface terminated Pt3Co nanocubes in similar size.

9.
J Am Chem Soc ; 134(34): 14043-9, 2012 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-22839450

RESUMO

We report a Kirkwood-Alder transition in a system of nonspherical Pt(3)Cu(2) nanoctahedra coated with oleic acid and oleylamine ligands. Using both transmission electron microscopy tomography with 3D reconstruction analysis and synchrotron-based in-situ grazing-incidence small-angle X-ray scattering (GISAXS) techniques, we specifically determined that these nanoctahedra can assemble into an open structure in which the nanoctahedra are arranged tip-to-tip to form a bcc superlattice with a low packing efficiency. Using in-situ and real-time GISAXS, we further observed a "nanoctahedron crystallization" as a soft Kirkwood-Alder transition, that is, the soft nanoactahedra crystallize at a critical concentration and possess continuous crystalline states during a period of solvent evaporation. Finally, we found a reversible change of the superlattice constant during the solvent annealing and evaporation/drying processes.


Assuntos
Aminas/química , Cobre/química , Nanoestruturas/química , Ácido Oleico/química , Compostos de Platina/química , Cristalização , Nanoestruturas/ultraestrutura , Espalhamento a Baixo Ângulo , Solventes/química , Difração de Raios X
10.
Microbiol Spectr ; 10(1): e0231221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196806

RESUMO

Members of the gut-dwelling Bacteroides genus have remarkable abilities in degrading a diverse set of fiber polysaccharide structures, most of which are found in the mammalian diet. As part of their metabolism, they convert these fibers to organic acids that can in turn provide energy to their host. While many studies have identified and characterized the genes and corresponding proteins involved in polysaccharide degradation, relatively little is known about Bacteroides genes involved in downstream metabolic pathways. Bacteroides thetaiotaomicron is one of the most studied species from the genus and is representative of this group in producing multiple organic acids as part of its metabolism. We focused here on several organic acid synthesis pathways in B. thetaiotaomicron, including those involved in formate, lactate, propionate, and acetate production. We identified potential genes involved in each pathway and characterized these through gene deletions coupled to growth assays and organic acid quantification. In addition, we developed and employed a Golden Gate-compatible plasmid system to simplify alteration of native gene expression levels. Our work both validates and contradicts previous bioinformatic gene annotations, and we develop a model on which to base future efforts. A clearer understanding of Bacteroides metabolic pathways can inform and facilitate efforts to employ these bacteria for improved human health or other utilization strategies. IMPORTANCE Both humans and animals host a large community of bacteria and other microorganisms in their gastrointestinal tracts. This community breaks down dietary fiber and produces organic acids that are used as an energy source by the body and can also help the host resist infection by various pathogens. While the Bacteroides genus is one of the most common in the gut microbiota, it is only distantly related to bacteria with well-characterized metabolic pathways and it is therefore unclear whether research insights on organic acid production in those species can also be directly applied to the Bacteroides. By investigating multiple genetic pathways for organic acid production in Bacteroides thetaiotaomicron, we provide a basis for deeper understanding of these pathways. The work further enables greater understanding of Bacteroides-host relationships, as well as inter-species relationships in the microbiota, which are of importance for both human and animal gut health.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroides thetaiotaomicron/genética , Bacteroides thetaiotaomicron/isolamento & purificação , Vias Biossintéticas , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos
11.
J Am Chem Soc ; 133(44): 17590-3, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21978384

RESUMO

We report a robust method for synthesis of monodisperse PbSeTe single ternary alloy and core/shell heterostructured nanocubes, respectively. The key synthetic strategy to produce such different classes of nanocubes is to precisely control the time of reaction and successive growth. The crystallinity, shape/size distributions, structural characteristics, and compositions of as-prepared nanocubes, both ternary alloy and core/shell, were carefully studied. A plausible growth mechanism for developing each type of lead chalcogenide nanocubes is proposed. These delicately designed PbSeTe nanoscale architectures offer tunable compositions in PbSeTe ternary alloy and nano-interfaces in core/shell nanocubes, which are the critical factors in controlling thermal conductivity for applications in thermoelectrics.


Assuntos
Ligas/síntese química , Chumbo/química , Nanopartículas Metálicas/química , Selênio/química , Telúrio/química , Ligas/química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
12.
Cell Host Microbe ; 28(3): 371-379.e5, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652063

RESUMO

Our emerging view of the gut microbiome largely focuses on bacteria, while less is known about other microbial components, such as bacteriophages (phages). Though phages are abundant in the gut, very few phages have been isolated from this ecosystem. Here, we report the genomes of 27 phages from the United States and Bangladesh that infect the prevalent human gut bacterium Bacteroides thetaiotaomicron. These phages are mostly distinct from previously sequenced phages with the exception of two, which are crAss-like phages. We compare these isolates to existing human gut metagenomes, revealing similarities to previously inferred phages and additional unexplored phage diversity. Finally, we use host tropisms of these phages to identify alleles of phage structural genes associated with infectivity. This work provides a detailed view of the gut's "viral dark matter" and a framework for future efforts to further integrate isolation- and sequencing-focused efforts to understand gut-resident phages.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/genética , Bacteroides thetaiotaomicron/virologia , Especificidade de Hospedeiro/genética , Tropismo Viral/genética , Bacteriófagos/isolamento & purificação , Bacteroides thetaiotaomicron/genética , Bangladesh , Biodiversidade , Microbioma Gastrointestinal , Genoma Viral , Genômica , Humanos , Metagenoma/genética , Filogenia , Análise de Sequência , Estados Unidos , Sequenciamento Completo do Genoma
13.
Nat Microbiol ; 5(9): 1170-1181, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32601452

RESUMO

A variety of cell surface structures dictate interactions between bacteria and their environment, including their viruses (bacteriophages). Members of the human gut Bacteroidetes characteristically produce several phase-variable capsular polysaccharides (CPSs), but their contributions to bacteriophage interactions are unknown. To begin to understand how CPSs have an impact on Bacteroides-phage interactions, we isolated 71 Bacteroides thetaiotaomicron-infecting bacteriophages from two locations in the United States. Using B. thetaiotaomicron strains that express defined subsets of CPSs, we show that CPSs dictate host tropism for these phages and that expression of non-permissive CPS variants is selected under phage predation, enabling survival. In the absence of CPSs, B. thetaiotaomicron escapes bacteriophage predation by altering expression of eight distinct phase-variable lipoproteins. When constitutively expressed, one of these lipoproteins promotes resistance to multiple bacteriophages. Our results reveal important roles for Bacteroides CPSs and other cell surface structures that allow these bacteria to persist under bacteriophage predation, and hold important implications for using bacteriophages therapeutically to target gut symbionts.


Assuntos
Cápsulas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/virologia , Lipoproteínas/metabolismo , Polissacarídeos/metabolismo , Animais , Bacteriófagos , Bacteroides/virologia , Feminino , Vida Livre de Germes , Humanos , Masculino , Camundongos , Polissacarídeos/genética , Transcriptoma
14.
Cell Host Microbe ; 25(2): 285-299.e8, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30763538

RESUMO

Bacteriophages are the most abundant members of the microbiota and have the potential to shape gut bacterial communities. Changes to bacteriophage composition are associated with disease, but how phages impact mammalian health remains unclear. We noted an induction of host immunity when experimentally treating bacterially driven cancer, leading us to test whether bacteriophages alter immune responses. Treating germ-free mice with bacteriophages leads to immune cell expansion in the gut. Lactobacillus, Escherichia, and Bacteroides bacteriophages and phage DNA stimulated IFN-γ via the nucleotide-sensing receptor TLR9. The resultant immune responses were both phage and bacteria specific. Additionally, increasing bacteriophage levels exacerbated colitis via TLR9 and IFN-γ. Similarly, ulcerative colitis (UC) patients responsive to fecal microbiota transplantation (FMT) have reduced phages compared to non-responders, and mucosal IFN-γ positively correlates with bacteriophage levels. Bacteriophages from active UC patients induced more IFN-γ compared to healthy individuals. Collectively, these results indicate that bacteriophages can alter mucosal immunity to impact mammalian health.


Assuntos
Bactérias/virologia , Bacteriófagos , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Colite Ulcerativa/patologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Humanos , Interferon gama/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Projetos Piloto , Estudos Prospectivos , Organismos Livres de Patógenos Específicos
15.
Trends Microbiol ; 26(11): 966-967, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30193959

RESUMO

This infographic on Bacteroides thetaiotaomicron (Bt) explores the ability of this microbe to digest a broad array of complex carbohydrates, alter its surface features, and its emerging role in gastrointestinal diseases. The infographic of Bacteroides thetaiotaomicron (Bt) illustrates two key facets of its symbiotic lifestyle in the human gut: a broad ability to digest dietary fiber polysaccharides and host glycans, and a dynamic cell-surface architecture that promotes both interactions with and evasion of the host immune system. The starch-utilization system (Sus) is a cell-surface and periplasmic system involved in starch cleavage and transport. Over 80 additional Sus-like systems utilize substrates ranging from host glycans to plant cell wall pectins. Bt has evolved intricate strategies to interact with other microbes or its host, including modification of its surface. Some nutrient utilization pathways select for or directly trigger changes in capsular polysaccharide (CPS) expression. Like other fermentative members of the gut microbiome, Bt produces host absorbable short-chain and organic acids, which can all be absorbed by the host as a source of energy.


Assuntos
Bacteroides thetaiotaomicron/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Fibras na Dieta/metabolismo , Fermentação , Humanos , Interações Microbianas/fisiologia , Células Vegetais , Polissacarídeos/metabolismo , Simbiose
16.
Cell Host Microbe ; 22(4): 494-506.e8, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28966055

RESUMO

Capsular polysaccharides (CPSs) play multiple roles in protecting bacteria from host and environmental factors, and many commensal bacteria can produce multiple capsule types. To better understand the roles of different CPSs in competitive intestinal colonization, we individually expressed the eight different capsules of the human gut symbiont Bacteroides thetaiotaomicron. Certain CPSs were most advantageous in vivo, and increased anti-CPS immunoglobulin A correlated with increased fitness of a strain expressing one particular capsule, CPS5, suggesting that it promotes avoidance of adaptive immunity. A strain with the ability to switch between multiple capsules was more competitive than those expressing any single capsule except CPS5. After antibiotic perturbation, only the wild-type, capsule-switching strain remained in the gut, shifting to prominent expression of CPS5 only in mice with intact adaptive immunity. These data suggest that different capsules equip mutualistic gut bacteria with the ability to thrive in various niches, including those influenced by immune responses and antibiotic perturbations.


Assuntos
Cápsulas Bacterianas/imunologia , Bacteroides thetaiotaomicron/imunologia , Microbioma Gastrointestinal/imunologia , Aptidão Genética/imunologia , Intestinos/microbiologia , Interações Microbianas/imunologia , Polissacarídeos Bacterianos/imunologia , Imunidade Adaptativa , Fatores Etários , Animais , Cápsulas Bacterianas/genética , Bacteroides thetaiotaomicron/genética , Fezes/química , Feminino , Microbioma Gastrointestinal/genética , Humanos , Imunoglobulina A/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos Bacterianos/genética
17.
mBio ; 8(5)2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-29018117

RESUMO

When presented with nutrient mixtures, several human gut Bacteroides species exhibit hierarchical utilization of glycans through a phenomenon that resembles catabolite repression. However, it is unclear how closely these observed physiological changes, often measured by altered transcription of glycan utilization genes, mirror actual glycan depletion. To understand the glycan prioritization strategies of two closely related human gut symbionts, Bacteroides ovatus and Bacteroides thetaiotaomicron, we performed a series of time course assays in which both species were individually grown in a medium with six different glycans that both species can degrade. Disappearance of the substrates and transcription of the corresponding polysaccharide utilization loci (PULs) were measured. Each species utilized some glycans before others, but with different priorities per species, providing insight into species-specific hierarchical preferences. In general, the presence of highly prioritized glycans repressed transcription of genes involved in utilizing lower-priority nutrients. However, transcriptional sensitivity to some glycans varied relative to the residual concentration in the medium, with some PULs that target high-priority substrates remaining highly expressed even after their target glycan had been mostly depleted. Coculturing of these organisms in the same mixture showed that the hierarchical orders generally remained the same, promoting stable coexistence. Polymer length was found to be a contributing factor for glycan utilization, thereby affecting its place in the hierarchy. Our findings not only elucidate how B. ovatus and B. thetaiotaomicron strategically access glycans to maintain coexistence but also support the prioritization of carbohydrate utilization based on carbohydrate structure, advancing our understanding of the relationships between diet and the gut microbiome.IMPORTANCE The microorganisms that reside in the human colon fulfill their energy requirements mainly from diet- and host-derived complex carbohydrates. Members of this ecosystem possess poorly understood strategies to prioritize and compete for these nutrients. Based on direct carbohydrate measurements and corresponding transcriptional analyses, our findings showed that individual bacterial species exhibit different preferences for the same set of glycans and that this prioritization is maintained in a competitive environment, which may promote stable coexistence. Such understanding of gut bacterial glycan utilization will be essential to eliciting predictable changes in the gut microbiota to improve health through the diet.


Assuntos
Bacteroides thetaiotaomicron/metabolismo , Bacteroides/metabolismo , Carboidratos da Dieta/metabolismo , Microbioma Gastrointestinal/fisiologia , Polissacarídeos/metabolismo , Bacteroides/crescimento & desenvolvimento , Bacteroides thetaiotaomicron/efeitos dos fármacos , Bacteroides thetaiotaomicron/crescimento & desenvolvimento , Repressão Catabólica , Meios de Cultura/química , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Polissacarídeos/genética , Simbiose , Transcrição Gênica
18.
Cell Host Microbe ; 19(6): 745-6, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27281562

RESUMO

To persist in the competitive gastrointestinal ecosystem, microbes often enforce selfish strategies that limit resource loss to neighboring bacteria. In contrast, a recent study in Nature by Rakoff-Nahoum et al. (2016) reveals that one commensal bacterium releases nutrients to benefit another species, which reciprocally provides growth-promoting factors to the producer.


Assuntos
Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Fenômenos Fisiológicos Bacterianos , Alimentos , Humanos , Inulina/metabolismo , Simbiose
19.
PLoS One ; 11(6): e0157092, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27275606

RESUMO

Antimicrobial chemokines (AMCs) are a recently described family of host defense peptides that play an important role in protecting a wide variety of organisms from bacterial infection. Very little is known about the bacterial targets of AMCs or factors that influence bacterial susceptibility to AMCs. In an effort to understand how bacterial pathogens resist killing by AMCs, we screened Yersinia pseudotuberculosis transposon mutants for those with increased binding to the AMCs CCL28 and CCL25. Mutants exhibiting increased binding to AMCs were subjected to AMC killing assays, which revealed their increased sensitivity to chemokine-mediated cell death. The majority of the mutants exhibiting increased binding to AMCs contained transposon insertions in genes related to lipopolysaccharide biosynthesis. A particularly strong effect on susceptibility to AMC mediated killing was observed by disruption of the hldD/waaF/waaC operon, necessary for ADP-L-glycero-D-manno-heptose synthesis and a complete lipopolysaccharide core oligosaccharide. Periodate oxidation of surface carbohydrates also enhanced AMC binding, whereas enzymatic removal of surface proteins significantly reduced binding. These results suggest that the structure of Y. pseudotuberculosis LPS greatly affects the antimicrobial activity of AMCs by shielding a protein ligand on the bacterial cell surface.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Quimiocinas CC/farmacologia , Farmacorresistência Bacteriana , Lipopolissacarídeos , Óperon , Yersinia pseudotuberculosis , Humanos , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Yersinia pseudotuberculosis/enzimologia , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/crescimento & desenvolvimento , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/metabolismo
20.
Cell Host Microbe ; 17(5): 672-80, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25974305

RESUMO

Microbes interact with the host immune system via several potential mechanisms. One essential step for each mechanism is the method by which intestinal microbes or their antigens access specific host immune cells. Using genetically susceptible mice (dnKO) that develop spontaneous, fulminant colitis, triggered by Bacteroides thetaiotaomicron (B. theta), we investigated the mechanism of intestinal microbial access under conditions that stimulate colonic inflammation. B. theta antigens localized to host immune cells through outer membrane vesicles (OMVs) that harbor bacterial sulfatase activity. We deleted the anaerobic sulfatase maturating enzyme (anSME) from B. theta, which is required for post-translational activation of all B. theta sulfatase enzymes. This bacterial mutant strain did not stimulate colitis in dnKO mice. Lastly, access of B. theta OMVs to host immune cells was sulfatase dependent. These data demonstrate that bacterial OMVs and associated enzymes promote inflammatory immune stimulation in genetically susceptible hosts.


Assuntos
Antígenos de Bactérias/metabolismo , Bacteroides/metabolismo , Colite/microbiologia , Interações Hospedeiro-Patógeno , Vesículas Secretórias/enzimologia , Vesículas Secretórias/metabolismo , Sulfatases/metabolismo , Animais , Bacteroides/genética , Colite/induzido quimicamente , Colite/patologia , Modelos Animais de Doenças , Deleção de Genes , Genes Bacterianos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA