Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Pers Med ; 12(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35743672

RESUMO

Autism spectrum disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders and occurs in all racial, ethnic, and socioeconomic groups. Cutting-edge technologies are contributing to understanding genetic underpinnings in ASD. The reported patient is a 32-year-old male and as an infant was noted to have microcephaly, hypospadias, pulmonary vascular anomaly, and small stature. He was diagnosed with Cornelia De Lange Syndrome (CDLS) at that time based on the clinical features. As a child, he had autistic features and intellectual disabilities and as diagnoses with autism and intellectual disability. He was referred as an adult to our neurodiversity clinic and a full exome trio sequencing with reflex to mitochondrial genes identified a de novo variant of uncertain significance in a candidate gene, DCAF1. The specific variant was c.137 C > T (p.Thr46Ile) in exon 4 in the DCAF1 gene. In silico analysis supports a deleterious effect on protein structure/function. DCAF1 participates with DDB1 and CUL4 as a part of the E3 ubiquitin ligase complex. The E3 ligase complex has been associated with a syndromic form of X-linked intellectual disability. The DDB1/CUL4 E3 ubiquitination complex plays a role in methylation-dependent ubiquitination. Next, a methylation study identified a signature similar to the methylation pattern found in X- linked intellectual disability type 93. This is associated with variants of the BRWD3 gene, which is linked with the functioning of the DDB1/CUL4 E3 ubiquitination complex. Taken together, this suggests that the de novo DCAF1 variant may be a newly identified molecular cause of autism and intellectual disability.

2.
J Pers Med ; 12(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35743705

RESUMO

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder, with mutations in hundreds of genes contributing to its risk. Herein, we studied lymphoblastoid cell lines (LCLs) from children diagnosed with autistic disorder (n = 10) and controls (n = 7) using RNA and miRNA sequencing profiles. The sequencing analysis identified 1700 genes and 102 miRNAs differentially expressed between the ASD and control LCLs (p ≤ 0.05). The top upregulated genes were GABRA4, AUTS2, and IL27, and the top upregulated miRNAs were hsa-miR-6813-3p, hsa-miR-221-5p, and hsa-miR-21-5p. The RT-qPCR analysis confirmed the sequencing results for randomly selected candidates: AUTS2, FMR1, PTEN, hsa-miR-15a-5p, hsa-miR-92a-3p, and hsa-miR-125b-5p. The functional enrichment analysis showed pathways involved in ASD control proliferation of neuronal cells, cell death of immune cells, epilepsy or neurodevelopmental disorders, WNT and PTEN signaling, apoptosis, and cancer. The integration of mRNA and miRNA sequencing profiles by miRWalk2.0 identified correlated changes in miRNAs and their targets' expression. The integration analysis found significantly dysregulated miRNA-gene pairs in ASD. Overall, these findings suggest that mRNA and miRNA expression profiles in ASD are greatly altered in LCLs and reveal numerous miRNA-gene interactions that regulate critical pathways involved in the proliferation of neuronal cells, cell death of immune cells, and neuronal development.

3.
J Pers Med ; 12(4)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35455715

RESUMO

Neurodevelopmental disorders have steadily increased in incidence in the United States. Over the past decade, there have been significant changes in clinical diagnoses and treatments some of which are due to the increasing adoption of pharmacogenomics (PGx) by clinicians. In this pilot study, a multidisciplinary team at the Arkansas Children's Hospital North West consulted on 27 patients referred for difficult-to-manage neurodevelopmental and/or neurobehavioral disorders. The 27 patients were evaluated by the team using records review, team discussion, and pharmacogenetic testing. OneOme RightMed® (Minneapolis, MN, USA) and the Arkansas Children's Hospital comprehensive PGx test were used for drug prescribing guidance. Of the 27 patients' predicted phenotypes, the normal metabolizer was 11 (40.8%) for CYP2C19 and 16 (59.3%) for CYP2D6. For the neurodevelopmental disorders, the most common comorbid conditions included attention-deficit hyperactivity disorder (66.7%), anxiety disorder (59.3%), and autism (40.7%). Following the team assessment and PGx testing, 66.7% of the patients had actionable medication recommendations. This included continuing current therapy, suggesting an appropriate alternative medication, starting a new therapy, or adding adjunct therapy (based on their current medication use). Moreover, 25.9% of patients phenoconverted to a CYP2D6 poor metabolizer. This retrospective chart review pilot study highlights the value of a multidisciplinary treatment approach to deliver precision healthcare by improving physician clinical decisions and potentially impacting patient outcomes. It also shows the feasibility to implement PGx testing in neurodevelopmental/neurobehavioral disorders.

4.
J Pers Med ; 11(9)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34575625

RESUMO

Autism Spectrum Disorder (ASD) comprises a heterogeneous group of neurodevelopmental disorders with a strong heritable genetic component. At present, ASD is diagnosed solely by behavioral criteria. Advances in genomic analysis have contributed to numerous candidate genes for the risk of ASD, where rare mutations and s common variants contribute to its susceptibility. Moreover, studies show rare de novo variants, copy number variation and single nucleotide polymorphisms (SNPs) also impact neurodevelopment signaling. Exploration of rare and common variants involved in common dysregulated pathways can provide new diagnostic and therapeutic strategies for ASD. Contributions of current innovative molecular strategies to understand etiology of ASD will be explored which are focused on whole exome sequencing (WES), whole genome sequencing (WGS), microRNA, long non-coding RNAs and CRISPR/Cas9 models. Some promising areas of pharmacogenomic and endophenotype directed therapies as novel personalized treatment and prevention will be discussed.

5.
J Pers Med ; 11(9)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34575699

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are important regulators of molecular pathways in psychiatric disease. Here, we examine differential miRNAs expression in lymphoblastoid cell lines (LCLs) derived from 10 individuals with autism spectrum disorder (ASD) and compare them to seven typically developing unrelated age- and gender-matched controls and 10 typically developing siblings. Small RNAseq analysis identified miRNAs, and selected miRNAs were validated using quantitative real-time polymerase reaction (qRT-PCR). KEGG analysis identified target pathways, and selected predicted mRNAs were validated using qRT-PCR. RESULTS: Small RNAseq analysis identified that multiple miRNAs differentiated ASD from unrelated controls and ASD from typically developing siblings, with only one, hsa-miR-451a_R-1, being in common. Verification with qRT-PCR showed that miR-320a differentiated ASD from both sibling and unrelated controls and that several members of the miR-181 family differentiated ASD from unrelated controls. Differential expression of AKT2, AKT3, TNF α and CamKinase II predicted by KEGG analysis was verified by qRT-PCR. Expression of CamKinase II ßwas found to be correlated with the severity of stereotyped behavior of the ASD participants. CONCLUSIONS: This study provides insight into the mechanisms regulating molecular pathways in individuals with ASD and identifies differentiated regulated genes involved in both the central nervous system and the immune system.

6.
Paediatr Drugs ; 23(1): 95-104, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33236188

RESUMO

BACKGROUND: Medication refusal in children is largely driven by aversive taste profiles, which in turn influence adherence and therapeutic outcomes. However, there are no standardized methods for evaluating taste in young children. This study compares facial recognition technology with three hedonic visual scales in this population. METHODS: Children, 3-7 years of age, were enrolled with informed parental permission into an institutional review board-approved, double-blind, randomized investigation. Each child received three test articles: prednisone (bitter), simple syrup (sweet), and filtered water (neutral), with an appropriate washout. Facial recognition software (Noldus FaceReader 7) recorded facial expression and intensity for 30-60 s after administration. Participants subsequently rated taste using three hedonic scales (5-point Sjövall and 5- and 3-point TASTY) and responded to simple questions on their perception of the test article. Repeated measures analysis of variance and multiple regression analysis were used to explore associations between palatability measures. RESULTS: Twelve children (seven males: ten white and two black) completed the study without adverse effects. There were no significant differences in participant characteristics by randomization sequence. The three hedonic scales tracked similarly for each test substance, with correlations between the 5-point scales (r = 0.899) comparable to those between the 3- and 5-point scales (r = 0.860-0.903). Hedonic scales appeared more reliable in assessing taste response than facial recognition, which did not effectively discriminate positive and negative responses. CONCLUSIONS: Our experience suggests that the TASTY scales appear to offer the greatest promise for assessing palatability in future clinical use.


Assuntos
Avaliação das Necessidades/normas , Paladar/fisiologia , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Masculino , Projetos Piloto
7.
J Pers Med ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064668

RESUMO

Pharmacogenomics (PGx) is a growing field within precision medicine. Testing can help predict adverse events and sub-therapeutic response risks of certain medications. To date, the US FDA lists over 280 drugs which provide biomarker-based dosing guidance for adults and children. At Arkansas Children's Hospital (ACH), a clinical PGx laboratory-based test was developed and implemented to provide guidance on 66 pediatric medications for genotype-guided dosing. This PGx test consists of 174 single nucleotide polymorphisms (SNPs) targeting 23 clinically actionable PGx genes or gene variants. Individual genotypes are processed to provide per-gene discrete results in star-allele and phenotype format. These results are then integrated into EPIC- EHR. Genomic indicators built into EPIC-EHR provide the source for clinical decision support (CDS) for clinicians, providing genotype-guided dosing.

8.
J Invest Dermatol ; 123(3): 576-82, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15304099

RESUMO

Phenotypic characteristics of members of a melanoma prone kindred with a V126D CDKN2A gene mutation were monitored over approximately 15 y. Thirty-eight previously studied subjects were recruited. Participants underwent a complete skin examination by the same dermatologist who examined them initially. The size and location of all nevi were recorded on a body map diagram. Total nevus number (TNN) and total nevus density (TND) were determined. CDKN2A sequencing verified 13 mutation carriers and 16 non-carriers. Nine participants were spouse controls without a history of melanoma and did not carry a CDKN2A mutation. Mutation carriers demonstrated a greater mean TNN and TND at initial and follow-up examinations compared with non-carriers and continued to develop nevi rather than show nevus regression seen in non-carriers and spouse controls. Non-carriers showed an intermediate nevus phenotype between mutation carriers and spouse controls. Four of the 13 mutation carriers and one non-carrier have developed invasive melanoma. Over a 15-y interval, TNN and TND were increased in mutation carriers compared with non-carriers and spouse controls. Continued accumulation of nevi in mutation carriers supports a nevogenic role for this CDKN2A mutation. An intermediate nevus phenotype in non-carrier family members suggests the presence of additional modifier genes.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Melanoma/genética , Nevo/genética , Neoplasias Cutâneas/genética , Adolescente , Adulto , Criança , Meio Ambiente , Saúde da Família , Feminino , Seguimentos , Heterozigoto , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Mutação Puntual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA