Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Genes Dev ; 32(5-6): 373-388, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29555651

RESUMO

It has been well established that histone and DNA modifications are critical to maintaining the equilibrium between pluripotency and differentiation during early embryogenesis. Mutations in key regulators of DNA methylation have shown that the balance between gene regulation and function is critical during neural development in early years of life. However, there have been no identified cases linking epigenetic regulators to aberrant human development and fetal demise. Here, we demonstrate that a homozygous inactivating mutation in the histone deacetylase SIRT6 results in severe congenital anomalies and perinatal lethality in four affected fetuses. In vitro, the amino acid change at Asp63 to a histidine results in virtually complete loss of H3K9 deacetylase and demyristoylase functions. Functionally, SIRT6 D63H mouse embryonic stem cells (mESCs) fail to repress pluripotent gene expression, direct targets of SIRT6, and exhibit an even more severe phenotype than Sirt6-deficient ESCs when differentiated into embryoid bodies (EBs). When terminally differentiated toward cardiomyocyte lineage, D63H mutant mESCs maintain expression of pluripotent genes and fail to form functional cardiomyocyte foci. Last, human induced pluripotent stem cells (iPSCs) derived from D63H homozygous fetuses fail to differentiate into EBs, functional cardiomyocytes, and neural progenitor cells due to a failure to repress pluripotent genes. Altogether, our study described a germline mutation in SIRT6 as a cause for fetal demise, defining SIRT6 as a key factor in human development and identifying the first mutation in a chromatin factor behind a human syndrome of perinatal lethality.


Assuntos
Mutação/genética , Sirtuínas/genética , Animais , Diferenciação Celular/genética , Corpos Embrioides , Células-Tronco Embrionárias , Morte Fetal , Expressão Gênica/genética , Humanos , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
2.
Hum Mol Genet ; 32(7): 1223-1235, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36440963

RESUMO

Birt-Hogg-Dubé syndrome (BHD) is an autosomal dominant disorder characterized by fibrofolliculomas, pulmonary cysts, pneumothoraces and renal cell carcinomas. Here, we reveal a novel hereditary disorder in a family with skin and mucosal lesions, extensive lipomatosis and renal cell carcinomas. The proband was initially diagnosed with BHD based on the presence of fibrofolliculomas, but no pathogenic germline variant was detected in FLCN, the gene associated with BHD. By whole exome sequencing we identified a heterozygous missense variant (p.(Cys677Tyr)) in a zinc-finger encoding domain of the PRDM10 gene which co-segregated with the phenotype in the family. We show that PRDM10Cys677Tyr loses affinity for a regulatory binding motif in the FLCN promoter, abrogating cellular FLCN mRNA and protein levels. Overexpressing inducible PRDM10Cys677Tyr in renal epithelial cells altered the transcription of multiple genes, showing overlap but also differences with the effects of knocking out FLCN. We propose that PRDM10 controls an extensive gene program and acts as a critical regulator of FLCN gene transcription in human cells. The germline variant PRDM10Cys677Tyr curtails cellular folliculin expression and underlies a distinguishable syndrome characterized by extensive lipomatosis, fibrofolliculomas and renal cell carcinomas.


Assuntos
Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Neoplasias Renais , Lipomatose , Neoplasias Cutâneas , Humanos , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Carcinoma de Células Renais/genética , Genes Supressores de Tumor , Neoplasias Cutâneas/genética , Lipomatose/genética , Neoplasias Renais/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
3.
Adv Exp Med Biol ; 1441: 915-928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884760

RESUMO

Ebstein's anomaly is a congenital malformation of the tricuspid valve characterized by abnormal attachment of the valve leaflets, resulting in varying degrees of valve dysfunction. The anatomic hallmarks of this entity are the downward displacement of the attachment of the septal and posterior leaflets of the tricuspid valve. Additional intracardiac malformations are common. From an embryological point of view, the cavity of the future right atrium does not have a direct orifice connected to the developing right ventricle. This chapter provides an overview of current insight into how this connection is formed and how malformations of the tricuspid valve arise from dysregulation of molecular and morphological events involved in this process. Furthermore, mouse models that show features of Ebstein's anomaly and the naturally occurring model of canine tricuspid valve malformation are described and compared to the human model. Although Ebstein's anomaly remains one of the least understood cardiac malformations to date, the studies summarized here provide, in aggregate, evidence for monogenic and oligogenic factors driving pathogenesis.


Assuntos
Modelos Animais de Doenças , Anomalia de Ebstein , Valva Tricúspide , Anomalia de Ebstein/genética , Anomalia de Ebstein/patologia , Anomalia de Ebstein/fisiopatologia , Animais , Humanos , Cães , Camundongos , Valva Tricúspide/anormalidades , Valva Tricúspide/patologia
4.
PLoS Genet ; 17(7): e1009679, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324492

RESUMO

Numerous genetic studies have established a role for rare genomic variants in Congenital Heart Disease (CHD) at the copy number variation (CNV) and de novo variant (DNV) level. To identify novel haploinsufficient CHD disease genes, we performed an integrative analysis of CNVs and DNVs identified in probands with CHD including cases with sporadic thoracic aortic aneurysm. We assembled CNV data from 7,958 cases and 14,082 controls and performed a gene-wise analysis of the burden of rare genomic deletions in cases versus controls. In addition, we performed variation rate testing for DNVs identified in 2,489 parent-offspring trios. Our analysis revealed 21 genes which were significantly affected by rare CNVs and/or DNVs in probands. Fourteen of these genes have previously been associated with CHD while the remaining genes (FEZ1, MYO16, ARID1B, NALCN, WAC, KDM5B and WHSC1) have only been associated in small cases series or show new associations with CHD. In addition, a systems level analysis revealed affected protein-protein interaction networks involved in Notch signaling pathway, heart morphogenesis, DNA repair and cilia/centrosome function. Taken together, this approach highlights the importance of re-analyzing existing datasets to strengthen disease association and identify novel disease genes and pathways.


Assuntos
Variações do Número de Cópias de DNA/genética , Haploinsuficiência/genética , Cardiopatias Congênitas/genética , Bases de Dados Genéticas , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença/genética , Genômica/métodos , Humanos , Canais Iônicos/genética , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética , Transcriptoma/genética
6.
Circulation ; 145(8): 606-619, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35113653

RESUMO

BACKGROUND: The pathogenic missense variant p.G125R in TBX5 (T-box transcription factor 5) causes Holt-Oram syndrome (also known as hand-heart syndrome) and early onset of atrial fibrillation. Revealing how an altered key developmental transcription factor modulates cardiac physiology in vivo will provide unique insights into the mechanisms underlying atrial fibrillation in these patients. METHODS: We analyzed ECGs of an extended family pedigree of Holt-Oram syndrome patients. Next, we introduced the TBX5-p.G125R variant in the mouse genome (Tbx5G125R) and performed electrophysiologic analyses (ECG, optical mapping, patch clamp, intracellular calcium measurements), transcriptomics (single-nuclei and tissue RNA sequencing), and epigenetic profiling (assay for transposase-accessible chromatin using sequencing, H3K27ac [histone H3 lysine 27 acetylation] CUT&RUN [cleavage under targets and release under nuclease sequencing]). RESULTS: We discovered high incidence of atrial extra systoles and atrioventricular conduction disturbances in Holt-Oram syndrome patients. Tbx5G125R/+ mice were morphologically unaffected and displayed variable RR intervals, atrial extra systoles, and susceptibility to atrial fibrillation, reminiscent of TBX5-p.G125R patients. Atrial conduction velocity was not affected but systolic and diastolic intracellular calcium concentrations were decreased and action potentials were prolonged in isolated cardiomyocytes of Tbx5G125R/+ mice compared with controls. Transcriptional profiling of atria revealed the most profound transcriptional changes in cardiomyocytes versus other cell types, and identified over a thousand coding and noncoding transcripts that were differentially expressed. Epigenetic profiling uncovered thousands of TBX5-p.G125R-sensitive, putative regulatory elements (including enhancers) that gained accessibility in atrial cardiomyocytes. The majority of sites with increased accessibility were occupied by Tbx5. The small group of sites with reduced accessibility was enriched for DNA-binding motifs of members of the SP (specificity protein) and KLF (Krüppel-like factor) families of transcription factors. These data show that Tbx5-p.G125R induces changes in regulatory element activity, alters transcriptional regulation, and changes cardiomyocyte behavior, possibly caused by altered DNA binding and cooperativity properties. CONCLUSIONS: Our data reveal that a disease-causing missense variant in TBX5 induces profound changes in the atrial transcriptional regulatory network and epigenetic state in vivo, leading to arrhythmia reminiscent of those seen in human TBX5-p.G125R variant carriers.


Assuntos
Anormalidades Múltiplas , Regulação da Expressão Gênica , Cardiopatias Congênitas , Comunicação Interatrial , Heterozigoto , Deformidades Congênitas das Extremidades Inferiores , Mutação de Sentido Incorreto , Linhagem , Proteínas com Domínio T , Deformidades Congênitas das Extremidades Superiores , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Substituição de Aminoácidos , Animais , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Feminino , Átrios do Coração/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Comunicação Interatrial/genética , Comunicação Interatrial/metabolismo , Humanos , Deformidades Congênitas das Extremidades Inferiores/genética , Deformidades Congênitas das Extremidades Inferiores/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Deformidades Congênitas das Extremidades Superiores/genética , Deformidades Congênitas das Extremidades Superiores/metabolismo
7.
J Hum Genet ; 68(4): 273-279, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36599954

RESUMO

Previously, we reported a series of families presenting with trichodiscomas, inherited in an autosomal dominant pattern. The phenotype was named familial multiple discoid fibromas (FMDF). The genetic cause of FMDF remained unknown so far. Trichodiscomas are skin lesions previously reported to be part of the same spectrum as the fibrofolliculoma observed in Birt-Hogg-Dubé syndrome (BHD), an inherited disease caused by pathogenic variants in the FLCN gene. Given the clinical and histological differences with BHD and the exclusion of linkage with the FLCN locus, the phenotype was concluded to be distinct from BHD. We performed extensive clinical evaluations and genetic testing in ten families with FMDF. We identified a FNIP1 frameshift variant in nine families and genealogical studies showed common ancestry for eight families. Using whole exome sequencing, we identified six additional rare variants in the haplotype surrounding FNIP1, including a missense variant in the PDGFRB gene that was found to be present in all tested patients with FMDF. Genome-wide linkage analysis showed that the locus on chromosome 5 including FNIP1 was the only region reaching the maximal possible LOD score. We concluded that FMDF is linked to a haplotype on chromosome 5. Additional evaluations in families with FMDF are required to unravel the exact genetic cause underlying the phenotype. When evaluating patients with multiple trichodisomas without a pathogenic variant in the FLCN gene, further genetic testing is warranted and can include analysis of the haplotype on chromosome 5.


Assuntos
Síndrome de Birt-Hogg-Dubé , Fibroma , Neoplasias Renais , Humanos , Neoplasias Renais/genética , Cromossomos Humanos Par 5/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Proto-Oncogênicas/genética , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Birt-Hogg-Dubé/patologia , Fibroma/genética , Proteínas de Transporte/genética
8.
Genet Med ; 23(1): 103-110, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32820247

RESUMO

PURPOSE: In this study we aimed to establish the genetic cause of a myriad of cardiovascular defects prevalent in individuals from a genetically isolated population, who were found to share a common ancestor in 1728. METHODS: Trio genome sequencing was carried out in an index patient with critical congenital heart disease (CHD); family members had either exome or Sanger sequencing. To confirm enrichment, we performed a gene-based association test and meta-analysis in two independent validation cohorts: one with 2685 CHD cases versus 4370 . These controls were also ancestry-matched (same as FTAA controls), and the other with 326 cases with familial thoracic aortic aneurysms (FTAA) and dissections versus 570 ancestry-matched controls. Functional consequences of identified variants were evaluated using expression studies. RESULTS: We identified a loss-of-function variant in the Notch target transcription factor-encoding gene HEY2. The homozygous state (n = 3) causes life-threatening congenital heart defects, while 80% of heterozygous carriers (n = 20) had cardiovascular defects, mainly CHD and FTAA of the ascending aorta. We confirm enrichment of rare risk variants in HEY2 functional domains after meta-analysis (MetaSKAT p = 0.018). Furthermore, we show that several identified variants lead to dysregulation of repression by HEY2. CONCLUSION: A homozygous germline loss-of-function variant in HEY2 leads to critical CHD. The majority of heterozygotes show a myriad of cardiovascular defects.


Assuntos
Aneurisma da Aorta Torácica , Cardiopatias Congênitas , Aneurisma da Aorta Torácica/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Predisposição Genética para Doença , Células Germinativas , Cardiopatias Congênitas/genética , Humanos , Linhagem , Proteínas Repressoras
9.
Genet Med ; 23(10): 1952-1960, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34113005

RESUMO

PURPOSE: Rare genetic variants in KDR, encoding the vascular endothelial growth factor receptor 2 (VEGFR2), have been reported in patients with tetralogy of Fallot (TOF). However, their role in disease causality and pathogenesis remains unclear. METHODS: We conducted exome sequencing in a familial case of TOF and large-scale genetic studies, including burden testing, in >1,500 patients with TOF. We studied gene-targeted mice and conducted cell-based assays to explore the role of KDR genetic variation in the etiology of TOF. RESULTS: Exome sequencing in a family with two siblings affected by TOF revealed biallelic missense variants in KDR. Studies in knock-in mice and in HEK 293T cells identified embryonic lethality for one variant when occurring in the homozygous state, and a significantly reduced VEGFR2 phosphorylation for both variants. Rare variant burden analysis conducted in a set of 1,569 patients of European descent with TOF identified a 46-fold enrichment of protein-truncating variants (PTVs) in TOF cases compared to controls (P = 7 × 10-11). CONCLUSION: Rare KDR variants, in particular PTVs, strongly associate with TOF, likely in the setting of different inheritance patterns. Supported by genetic and in vivo and in vitro functional analysis, we propose loss-of-function of VEGFR2 as one of the mechanisms involved in the pathogenesis of TOF.


Assuntos
Tetralogia de Fallot , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Animais , Predisposição Genética para Doença , Células HEK293 , Humanos , Camundongos , Tetralogia de Fallot/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Sequenciamento do Exoma
10.
Am J Med Genet A ; 185(12): 3814-3820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34254723

RESUMO

Terminal osseous dysplasia with pigmentary defects (TODPD), also known as digitocutaneous dysplasia, is one of the X-linked filaminopathies caused by a variety of FLNA-variants. TODPD is characterized by skeletal defects, skin fibromata and dysmorphic facial features. So far, only a single recurrent variant (c.5217G>A;p.Val1724_Thr1739del) in FLNA has found to be responsible for TODPD. We identified a novel c.5217+5G>C variant in FLNA in a female proband with skeletal defects, skin fibromata, interstitial lung disease, epilepsy, and restrictive cardiomyopathy. This variant causes mis-splicing of exon 31 predicting the production of a FLNA-protein with an in-frame-deletion of 16 residues identical to the miss-splicing-effect of the recurrent TODPD c.5217G>A variant. This mis-spliced transcript was explicitly detected in heart tissue, but was absent from blood, skin, and lung. X-inactivation analyses showed extreme skewing with almost complete inactivation of the mutated allele (>90%) in these tissues, except for heart. The mother of the proband, who also has fibromata and skeletal abnormalities, is also carrier of the FLNA-variant and was diagnosed with noncompaction cardiomyopathy after cardiac screening. No other relevant variants in cardiomyopathy-related genes were found. Here we describe a novel variant in FLNA (c.5217+5G>C) as the second pathogenic variant responsible for TODPD. Cardiomyopathy has not been described as a phenotypic feature of TODPD before.


Assuntos
Cardiomiopatias/genética , Filaminas/genética , Dedos/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/genética , Predisposição Genética para Doença , Deformidades Congênitas dos Membros/genética , Osteocondrodisplasias/genética , Transtornos da Pigmentação/genética , Dedos do Pé/anormalidades , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Pré-Escolar , Feminino , Dedos/patologia , Genes Ligados ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Deformidades Congênitas dos Membros/complicações , Deformidades Congênitas dos Membros/patologia , Mutação/genética , Osteocondrodisplasias/complicações , Osteocondrodisplasias/patologia , Fenótipo , Transtornos da Pigmentação/complicações , Transtornos da Pigmentação/patologia , Deleção de Sequência/genética , Dedos do Pé/patologia , Inativação do Cromossomo X/genética
11.
Circ Res ; 124(4): 553-563, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30582441

RESUMO

RATIONALE: Familial recurrence studies provide strong evidence for a genetic component to the predisposition to sporadic, nonsyndromic Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease phenotype. Rare genetic variants have been identified as important contributors to the risk of congenital heart disease, but relatively small numbers of TOF cases have been studied to date. OBJECTIVE: We used whole exome sequencing to assess the prevalence of unique, deleterious variants in the largest cohort of nonsyndromic TOF patients reported to date. METHODS AND RESULTS: Eight hundred twenty-nine TOF patients underwent whole exome sequencing. The presence of unique, deleterious variants was determined; defined by their absence in the Genome Aggregation Database and a scaled combined annotation-dependent depletion score of ≥20. The clustering of variants in 2 genes, NOTCH1 and FLT4, surpassed thresholds for genome-wide significance (assigned as P<5×10-8) after correction for multiple comparisons. NOTCH1 was most frequently found to harbor unique, deleterious variants. Thirty-one changes were observed in 37 probands (4.5%; 95% CI, 3.2%-6.1%) and included 7 loss-of-function variants 22 missense variants and 2 in-frame indels. Sanger sequencing of the unaffected parents of 7 cases identified 5 de novo variants. Three NOTCH1 variants (p.G200R, p.C607Y, and p.N1875S) were subjected to functional evaluation, and 2 showed a reduction in Jagged1-induced NOTCH signaling. FLT4 variants were found in 2.4% (95% CI, 1.6%-3.8%) of TOF patients, with 21 patients harboring 22 unique, deleterious variants. The variants identified were distinct to those that cause the congenital lymphoedema syndrome Milroy disease. In addition to NOTCH1, FLT4 and the well-established TOF gene, TBX1, we identified potential association with variants in several other candidates, including RYR1, ZFPM1, CAMTA2, DLX6, and PCM1. CONCLUSIONS: The NOTCH1 locus is the most frequent site of genetic variants predisposing to nonsyndromic TOF, followed by FLT4. Together, variants in these genes are found in almost 7% of TOF patients.


Assuntos
Exoma , Taxa de Mutação , Tetralogia de Fallot/genética , Autoantígenos/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/genética , Proteínas de Homeodomínio/genética , Humanos , Mutação com Perda de Função , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Receptor Notch1/genética , Transativadores/genética , Fatores de Transcrição/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética
12.
Am J Med Genet A ; 182(8): 1952-1956, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32462814

RESUMO

Pathogenic variants in components of the minor spliceosome have been associated with several human diseases. Recently, it was reported that biallelic RNPC3 variants lead to severe isolated growth hormone deficiency and pituitary hypoplasia. The RNPC3 gene codes for the U11/U12-65K protein, a component of the minor spliceosome. The minor spliceosome plays a role in the splicing of minor (U12-type) introns, which are present in ~700-800 genes in humans and represent about 0.35% of all introns. Here, we report a second family with biallelic RNPC3 variants in three siblings with a growth hormone deficiency, central congenital hypothyroidism, congenital cataract, developmental delay/intellectual deficiency and delayed puberty. These cases further confirm the association between biallelic RNPC3 variants and severe postnatal growth retardation due to growth hormone deficiency. Furthermore, these cases show that the phenotype of this minor spliceosome-related disease might be broader than previously described.


Assuntos
Hipotireoidismo Congênito/genética , Deficiências do Desenvolvimento/genética , Nanismo Hipofisário/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Adolescente , Adulto , Catarata , Criança , Pré-Escolar , Hipotireoidismo Congênito/complicações , Hipotireoidismo Congênito/patologia , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/patologia , Nanismo Hipofisário/complicações , Nanismo Hipofisário/diagnóstico , Nanismo Hipofisário/patologia , Feminino , Hormônio do Crescimento/deficiência , Hormônio do Crescimento/genética , Humanos , Íntrons/genética , Masculino , Fenótipo , Puberdade Tardia/complicações , Puberdade Tardia/genética , Puberdade Tardia/patologia , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/patologia , Adulto Jovem
13.
J Mol Cell Cardiol ; 126: 86-95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452906

RESUMO

BACKGROUND: The intercalated disc (ID) is important for cardiac remodeling and has become a subject of intensive research efforts. However, as yet the composition of the ID has still not been conclusively resolved and the role of many proteins identified in the ID, like Flotillin-2, is often unknown. The Flotillin proteins are known to be involved in the stabilization of cadherins and desmosomes in the epidermis and upon cancer development. However, their role in the heart has so far not been investigated. Therefore, in this study, we aimed at identifying the role of Flotillin-1 and Flotillin-2 in the cardiac ID. METHODS: Location of Flotillins in human and murine cardiac tissue was evaluated by fluorescent immunolabeling and co-immunoprecipitation. In addition, the effect of Flotillin knockout (KO) on proteins of the ID and in electrical excitation and conduction was investigated in cardiac samples of wildtype (WT), Flotillin-1 KO, Flotilin-2 KO and Flotilin-1/2 double KO mice. Consequences of Flotillin knockdown (KD) on cardiac function were studied (patch clamp and Multi Electrode Array (MEA)) in neonatal rat cardiomyocytes (NRCMs) transfected with siRNAs against Flotillin-1 and/or Flotillin-2. RESULTS: First, we confirmed presence in the ID and mutual binding of Flotillin-1 and Flotillin-2 in murine and human cardiac tissue. Flotillin KO mice did not show cardiac fibrosis, nor hypertrophy or changes in expression of the desmosomal ID proteins. However, protein expression of the cardiac sodium channel NaV1.5 was significantly decreased in Flotillin-1 and Flotillin-1/2 KO mice compared to WT mice. In addition, sodium current density showed a significant decrease upon Flotillin-1/2 KD in NRCMs as compared to scrambled siRNA-transfected NRCMs. MEA recordings of Flotillin-2 KD NRCM cultures showed a significantly decreased spike amplitude and a tendency of a reduced spike slope when compared to control and scrambled siRNA-transfected cultures. CONCLUSIONS: In this study, we demonstrate the presence of Flotillin-1, in addition to Flotillin-2 in the cardiac ID. Our findings indicate a modulatory role of Flotillins on NaV1.5 expression at the ID, with potential consequences for cardiac excitation.


Assuntos
Proteínas de Membrana/metabolismo , Miocárdio/metabolismo , Animais , Animais Recém-Nascidos , Conexina 43/metabolismo , Humanos , Ativação do Canal Iônico , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Ratos Wistar
14.
Am J Med Genet A ; 179(9): 1836-1845, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31301121

RESUMO

The first human mutations in GATA6 were described in a cohort of patients with persistent truncus arteriosus, and the phenotypic spectrum has expanded since then. This study underscores the broad phenotypic spectrum by presenting two patients with de novo GATA6 mutations, both exhibiting complex cardiac defects, pancreatic, and other abnormalities. Furthermore, we provided a detailed overview of all published human genetic variation in/near GATA6 published to date and the associated phenotypes (n = 78). We conclude that the most common phenotypes associated with a mutation in GATA6 were structural cardiac and pancreatic abnormalities, with a penetrance of 87 and 60%, respectively. Other common malformations were gallbladder agenesis, congenital diaphragmatic hernia, and neurocognitive abnormalities, mostly developmental delay. Fifty-eight percent of the mutations were de novo, and these patients more often had an anomaly of intracardiac connections, an anomaly of the great arteries, and hypothyroidism, compared with those with inherited mutations. Functional studies mostly support loss-of-function as the pathophysiological mechanism. In conclusion, GATA6 mutations give a wide range of phenotypic defects, most frequently malformations of the heart and pancreas. This highlights the importance of detailed clinical evaluation of identified carriers to evaluate their full phenotypic spectrum.


Assuntos
Fator de Transcrição GATA6/genética , Cardiopatias Congênitas/genética , Coração/fisiopatologia , Persistência do Tronco Arterial/genética , Adulto , Criança , Vesícula Biliar/fisiopatologia , Predisposição Genética para Doença , Genótipo , Coração/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Hérnias Diafragmáticas Congênitas/diagnóstico por imagem , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/fisiopatologia , Heterozigoto , Humanos , Mutação com Perda de Função/genética , Masculino , Mutação , Pâncreas/diagnóstico por imagem , Pâncreas/fisiopatologia , Fenótipo , Persistência do Tronco Arterial/diagnóstico por imagem , Persistência do Tronco Arterial/fisiopatologia , Sequenciamento do Exoma
15.
Eur Heart J ; 39(12): 1015-1022, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29106500

RESUMO

Aims: Congenital heart defects (CHD) affect almost 1% of all live born children and the number of adults with CHD is increasing. In families where CHD has occurred previously, estimates of recurrence risk, and the type of recurring malformation are important for counselling and clinical decision-making, but the recurrence patterns in families are poorly understood. We aimed to determine recurrence patterns, by investigating the co-occurrences of CHD in 1163 families with known malformations, comprising 3080 individuals with clinically confirmed diagnosis. Methods and results: We calculated rates of concordance and discordance for 41 specific types of malformations, observing a high variability in the rates of concordance and discordance. By calculating odds ratios for each of 1640 pairs of discordant lesions observed between affected family members, we were able to identify 178 pairs of malformations that co-occurred significantly more or less often than expected in families. The data show that distinct groups of cardiac malformations co-occur in families, suggesting influence from underlying developmental mechanisms. Analysis of human and mouse susceptibility genes showed that they were shared in 19% and 20% of pairs of co-occurring discordant malformations, respectively, but none of malformations that rarely co-occur, suggesting that a significant proportion of co-occurring lesions in families is caused by overlapping susceptibility genes. Conclusion: Familial CHD follow specific patterns of recurrence, suggesting a strong influence from genetically regulated developmental mechanisms. Co-occurrence of malformations in families is caused by shared susceptibility genes.


Assuntos
Anormalidades Múltiplas/genética , Predisposição Genética para Doença , Cardiopatias Congênitas/genética , Sistema de Registros , Anormalidades Múltiplas/epidemiologia , Adulto , Europa (Continente)/epidemiologia , Feminino , Cardiopatias Congênitas/epidemiologia , Humanos , Recém-Nascido , Masculino , Morbidade/tendências , Linhagem , Fatores de Risco
17.
Hum Mutat ; 37(2): 194-200, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26531781

RESUMO

Establishing correct left-right asymmetry during embryonic development is crucial for proper asymmetric positioning of the organs. Congenital heart defects, such as dextrocardia, transposition of the arteries, and inflow or outflow tract malformations, comprise some of the most common birth defects and may be attributed to incorrect establishment of body laterality. Here, we identify new patients with dextrocardia who have mutations in CFAP53, a coiled-coil domain containing protein. To elucidate the mechanism by which CFAP53 regulates embryonic asymmetry, we used genome editing to generate cfap53 zebrafish mutants. Zebrafish cfap53 mutants have specific defects in organ laterality and randomization of asymmetric gene expression. We show that cfap53 is required for cilia rotation specifically in Kupffer's vesicle, the zebrafish laterality organ, providing a mechanism by which patients with CFAP53 mutations develop dextrocardia and heterotaxy, and confirming previous evidence that left-right asymmetry in humans is regulated through cilia-driven fluid flow in a laterality organ.


Assuntos
Proteínas do Citoesqueleto/genética , Dextrocardia/genética , Síndrome de Heterotaxia/genética , Mutação , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Padronização Corporal/genética , Cílios/metabolismo , Cílios/patologia , Sequência Conservada , Proteínas do Citoesqueleto/metabolismo , Análise Mutacional de DNA , Dextrocardia/metabolismo , Dextrocardia/patologia , Embrião não Mamífero , Desenvolvimento Embrionário/genética , Feminino , Expressão Gênica , Síndrome de Heterotaxia/metabolismo , Síndrome de Heterotaxia/patologia , Humanos , Sistema da Linha Lateral/embriologia , Sistema da Linha Lateral/metabolismo , Masculino , Dados de Sequência Molecular , Linhagem , Irmãos , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
J Hum Genet ; 61(1): 13-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26223183

RESUMO

Congenital heart disease (CHD) is the most common type of birth defect. The advent of corrective cardiac surgery and the increase in knowledge concerning the longitudinal care of patients with CHD has led to a spectacular increase in life expectancy. Therefore, >90% of children with CHD, who survive the first year of life, will live into adulthood. The etiology of CHD is complex and is associated with both environmental and genetic causes. CHD is a genetically heterogeneous disease that is associated with long-recognized chromosomal abnormalities, as well as with mutation in numerous (developmental) genes. Nevertheless, the genetic factors underlying CHD have remained largely elusive, and it is important to realize that in the far majority of CHD patients no causal mutation or chromosomal abnormality is identified. However, new insights (alternative inheritance paradigms) and technology (next-generation sequencing) have become available that can greatly advance our understanding of the genetic factors that contribute to CHD; these will be discussed in this review. Moreover, we will focus on the discovery of regulatory regions of key (heart) developmental genes and the occurrence of variations and mutations within, in the setting of CHD.


Assuntos
Cardiopatias Congênitas/genética , Sequências Reguladoras de Ácido Nucleico , Elementos Facilitadores Genéticos , Exoma , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Mutação
20.
Hum Mol Genet ; 22(7): 1473-81, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23297363

RESUMO

We conducted a genome-wide association study to search for risk alleles associated with Tetralogy of Fallot (TOF), using a northern European discovery set of 835 cases and 5159 controls. A region on chromosome 12q24 was associated (P = 1.4 × 10(-7)) and replicated convincingly (P = 3.9 × 10(-5)) in 798 cases and 2931 controls [per allele odds ratio (OR) = 1.27 in replication cohort, P = 7.7 × 10(-11) in combined populations]. Single nucleotide polymorphisms in the glypican 5 gene on chromosome 13q32 were also associated (P = 1.7 × 10(-7)) and replicated convincingly (P = 1.2 × 10(-5)) in 789 cases and 2927 controls (per allele OR = 1.31 in replication cohort, P = 3.03 × 10(-11) in combined populations). Four additional regions on chromosomes 10, 15 and 16 showed suggestive association accompanied by nominal replication. This study, the first genome-wide association study of a congenital heart malformation phenotype, provides evidence that common genetic variation influences the risk of TOF.


Assuntos
Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 13/genética , Estudo de Associação Genômica Ampla , Tetralogia de Fallot/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Loci Gênicos , Humanos , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA