RESUMO
Salts of inorganic cobalt (Со) prevent the degradation of the alpha subunit of the hypoxia-inducible factor (HIF), imitating the state of hypoxia in the body and increasing the production of the endogenous hormone erythropoietin (EPO), and are used as doping substances that increase blood oxygen capacity and endurance, which give competitive advantages in sports. Currently, a large number of dietary supplements, including Co-containing ones, are offered on free sale. Their uncontrolled intake can affect not only the professional career of athletes, but also their health, due to the fact that this trace element and its salts are the strongest inorganic poisons and carcinogens. Despite this, their availability on the pharmaceutical market, a noticeable effect of erythropoiesis stimulation and a convenient oral form of administration lead to the need for their detection in modern doping control. The purpose of this research was to develop an approach to differentiate cobalt from vitamin B12, present in the body in its natural state, from the intake of cobalt salts by quantifying and comparing blood levels of vitamin B12 and total cobalt. Methods. The study involved 9 healthy volunteers (women and men) aged 25 to 45 years, leading an active lifestyle. Three of them took 2500 µg/day of cobalamin for 20 days (comparison group), three - dietary supplement containing cobalt asparaginate (100 µg/day in terms of pure cobalt), and the rest - dietary supplements with cobalt sulfate heptahydrate (100 µg/day in terms of pure cobalt) (administration groups) at the same time after meals. Blood samples were taken at baseline and on days 5, 9, 14 and 20. The concentrations of total cobalt in blood plasma samples of volunteers were measured by inductively coupled plasma mass-spectrometry (ICP-MS), the levels of cobalamin were determined on a Cobas 6000 immunochemical analyzer using the Elecsys Vitamin B12 II Assay ELISA kits. Results. It was found that oral intake of of cobalamin at a therapeutic dose significantly exceeding the recommended daily intake (3 µg), there was a regular slight increase in the blood concentration of total cobalt (1.1 times). At the same time intake of dietary supplements containing cobalt in the form of sulfate or asparaginate (about 100 µg per day in terms of pure cobalt) was accompanied by 4-6.7 fold increase in the concentration of total cobalt while unchanged vitamin B12 plasma concentration was observed. The detection of such changes can reliably indicate the use of prohibited salts and, of course, will be in demand for anti-doping control. Conclusion. Long-term monitoring of vitamin B12 and total cobalt levels, similar to hematological module of the Athlete Biological Passport program, will unambiguously detect possible abuse of cobalt salts and can be an additional evidence of the presence of these doping substances to other analytical methods, such as a combination of liquid chromatography and ICP-MS (LC-ICP-MS).
Assuntos
Cobalto , Suplementos Nutricionais , Sais , Feminino , Humanos , Masculino , Cobalto/administração & dosagem , Cobalto/sangue , Suplementos Nutricionais/análise , Plasma/química , Vitamina B 12/análise , Adulto , Pessoa de Meia-IdadeRESUMO
Falsification and use of low-quality drugs of biological origin creates a threat to public health. To a greater extent, costly drugs, including bevacizumab, are exposed to similar abuses. Timely determination of cases of forgery or the improper clinical use of monoclonal antibody preparations is one of the necessary measures that can be taken to limit the risks and preserve the health of patients. This paper presents the results of the investigation of the bevacizumab preparation 'Avastin', which was withdrawn from ophthalmic clinical practice in the course of the investigation. We compared the qualitative and quantitative composition of the drug samples, which were determined using commonly available methods of chemical and toxicological analysis.