Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Prostate ; 79(16): 1793-1804, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31475744

RESUMO

BACKGROUND: Several studies had suggested the potential role of calcium signaling in prostate cancer (PCa) prognosis and agressiveness. We aimed to investigate selected proteins contributing to calcium (Ca2+ ) signaling, (Orai, stromal interaction molecule (STIM), and transient receptor potential (TRP) channels) and involved in cancer hallmarks, as independent predictors of systemic recurrence after radical prostatectomy (RP). METHODS: A case-control study including 112 patients with clinically localized PCa treated by RP between 2002 and 2009 and with at least 6-years' follow-up. Patients were divided into two groups according to the absence or presence of systemic recurrence. Expression levels of 10 proteins involved in Ca2+ signaling (TRPC1, TRPC4, TRPV5, TRPV6, TRPM8, STIM1, STIM2, Orai1, Orai2, and Orai3), were assessed by immunohistochemistry using tissue microarrays (TMAs) constructed from paraffin-embedded PCa specimens. The level of expression of the various transcripts in PCa was assessed using quantitative polymerase chain reaction (qPCR) analysis. RNA samples for qPCR were obtained from fresh frozen tissue samples of PCa after laser capture microdissection on RP specimens. Relative gene expression was analyzed using the 2-▵▵Ct method. RESULTS: Multivariate analysis showed that increased expression of TRPC1, TRPC4, TRPV5, TRPV6, TRPM8, and Orai2 was significantly associated with a lower risk of systemic recurrence after RP, independently of the prostate-specific antigen (PSA) level, percentage of positive biopsies, and surgical margin (SM) status (P = .007, P = .01, P < .001, P = .0065, P = .007, and P = .01, respectively). For TRPC4, TRPV5, and TRPV6, this association was also independent of Gleason score and pT stage. Moreover, overexpression of TRPV6 and Orai2 was significantly associated with longer time to recurrence after RP (P = .048 and .023, respectively). Overexpression of TRPC4, TRPV5, TRPV6, and Orai2 transcripts was observed in group R- (3.71-, 5.7-, 1.14-, and 2.65-fold increase, respectively). CONCLUSIONS: This is the first study to suggest the independent prognostic value of certain proteins involved in Ca2+ influx in systemic recurrence after RP: overexpression of TRPC1, TRPC4, TRPV5, TRPV6, TRPM8, and Orai2 is associated with a lower risk of systemic recurrence. TRPC4, TRPV5, and TRPV6 appear to be particularly interesting, as they are independent of the five commonly used predictive factors, that is, PSA, percentage of positive biopsies, SM status, Gleason score, and pT stage.


Assuntos
Canais de Cálcio Ativados pela Liberação de Cálcio/biossíntese , Sinalização do Cálcio , Recidiva Local de Neoplasia/metabolismo , Neoplasias da Próstata/metabolismo , Canais de Potencial de Receptor Transitório/biossíntese , Idoso , Biomarcadores Tumorais/biossíntese , Estudos de Casos e Controles , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Recidiva Local de Neoplasia/patologia , Valor Preditivo dos Testes , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Risco
2.
Sci Rep ; 9(1): 7926, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138874

RESUMO

In prostate carcinogenesis, expression and/or activation of the Transient Receptor Potential Melastatin 8 channel (TRPM8) was shown to block in vitro Prostate Cancer (PCa) cell migration. Because of their localization at the plasma membrane, ion channels, such as TRPM8 and other membrane receptors, are promising pharmacological targets. The aim of this study was thus to use nanocarriers encapsulating a TRPM8 agonist to efficiently activate the channel and therefore arrest PCa cell migration. To achieve this goal, the most efficient TRPM8 agonist, WS12, was encapsulated into Lipid NanoCapsules (LNC). The effect of the nanocarriers on channel activity and cellular physiological processes, such as cell viability and migration, were evaluated in vitro and in vivo. These results provide a proof-of-concept support for using TRPM8 channel-targeting nanotechnologies based on LNC to develop more effective methods inhibiting PCa cell migration in zebrafish xenograft.


Assuntos
Anilidas/farmacologia , Inibição de Migração Celular/efeitos dos fármacos , Mentol/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Canais de Cátion TRPM/agonistas , Anilidas/administração & dosagem , Humanos , Lipídeos/química , Masculino , Mentol/administração & dosagem , Mentol/farmacologia , Nanocápsulas/química , Células PC-3 , Neoplasias da Próstata/metabolismo , Canais de Cátion TRPM/metabolismo
3.
Oncogene ; 36(25): 3640-3647, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28114279

RESUMO

The remodeling of calcium homeostasis contributes to the cancer hallmarks and the molecular mechanisms involved in calcium channel regulation in tumors remain to be characterized. Here, we report that SigmaR1, a stress-activated chaperone, is required to increase calcium influx by triggering the coupling between SK3, a Ca2+-activated K+ channel (KCNN3) and the voltage-independent calcium channel Orai1. We show that SigmaR1 physically binds SK3 in BC cells. Inhibition of SigmaR1 activity, either by molecular silencing or by the use of sigma ligand (igmesine), decreased SK3 current and Ca2+ entry in breast cancer (BC) and colorectal cancer (CRC) cells. Interestingly, SigmaR1 inhibition diminished SK3 and/or Orai1 levels in lipid nanodomains isolated from BC cells. Analyses of tissue microarray from CRC patients showed higher SigmaR1 expression levels in cancer samples and a correlation with tumor grade. Moreover, the exploration of a cohort of 4937 BC patients indicated that high expression of SigmaR1 and Orai1 channels was significantly correlated to a lower overall survival. As the SK3/Orai1 tandem drives invasive process in CRC and bone metastasis progression in BC, our results may inaugurate innovative therapeutic approaches targeting SigmaR1 to control the remodeling of Ca2+ homeostasis in epithelial cancers.


Assuntos
Neoplasias da Mama/metabolismo , Sinalização do Cálcio , Movimento Celular , Neoplasias Colorretais/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores sigma/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Cálcio/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Receptores sigma/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Receptor Sigma-1
4.
Curr Med Chem ; 19(5): 697-713, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22204342

RESUMO

Many studies have reported changes in potassium channel expression in many cancers and the involvement of these channels in various stages of cancer progression. By contrast, data concerning SKCa channels (small conductance calcium-activated potassium channels) have only recently become available. This review aims i) to present the structure and physiology of SKCa channels, ii) to provide an overview of published data concerning the SKCa proteins produced in tumor cells, and, whenever possible, the biological function assigned to them and iii) to review previous and novel modulators of SKCa channels. SKCa channels are activated by low concentrations of intracellular calcium and consist of homo- or heteromeric assemblies of α-subunits named SK1, SK2 and SK3. SK2-3 channels are expressed in tumors and have been assigned a biological function in cancer cells: the enhancement of cell proliferation and cell migration by hijacking the functions of SK2 and SK3 channels, respectively. Two major classes of SKCa modulators have been described: toxins (apamin) and small synthetic molecules. Most SKCa blockers are pore blockers, but some modify the calcium sensitivity of SKCa channels without interacting with the apamin binding site. In this review, we present edelfosine and ohmline as atypical anticancer agents and novel SK3 inhibitors. Edelfosine and ohmline are synthetic alkyl-lipids with structures different from all previously described SKCa modulators. They should pave the way for the development of a new class of migration-targeted anticancer agents. We believe that such blockers have potential for use in the prevention or treatment of metastasis.


Assuntos
Neoplasias/tratamento farmacológico , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Antineoplásicos , Apamina , Humanos , Terapia de Alvo Molecular , Inibidores de Fosfodiesterase , Éteres Fosfolipídicos/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/química , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia
5.
Curr Cancer Drug Targets ; 11(9): 1111-25, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21999627

RESUMO

Edelfosine is an inhibitor of SK3 channel mediated cell migration. However, this compound bears adverse in vivo side effects. Using cell SK3 dependent cell-migration assay, patch-clamp, (125)I-apamin binding, and in vivo experiments we tested the ability of 15 lipid derivatives with chemical structures inspired from edelfosine to inhibit SK3 channels. Using a structure-activity relationship approach we identified an edelfosine analog named Ohmline (1-O-hexadecyl- 2-O-methyl-sn-glycero-3-lactose) with potent inhibitory effects on the SK3 channel. Its potency was greater for SK3 channels than for SK1 channels; it did not affect IKCa channels and only slightly but not significantly affected SK2 channels. This is the first SKCa channel blocker that can be used to discriminate between SK2 and SK1/SK3 channels and represents a useful tool to investigate the functional role of SK3 channels in peripheral tissues (that do not express SK1 channels). This compound, which acts with an IC(50) of 300 nM, did not displace apamin from SKCa channels and had no effect on non-specific edelfosine targets such as protein kinase C (PKC), receptors for platelet activating factor (PAF) and lysophosphatidic acid (LPA), as well as non-cancerous cells. This is promising because the pitfalls associated with the use of edelfosine-like compounds have been that their effective and high concentrations are often cytotoxic due to their detergent-like character causing normal cell lysis. Finally, Ohmline reduced metastasis development in a mice model of tumor indicating that this compound could become a lead compound for the first class of lipid-antimetastatic agent.


Assuntos
Movimento Celular/efeitos dos fármacos , Glicolipídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios de Migração Celular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Glicolipídeos/química , Humanos , Camundongos , Camundongos Nus , Estrutura Molecular , Éteres Fosfolipídicos/química , Éteres Fosfolipídicos/farmacologia , Glicoproteínas da Membrana de Plaquetas/agonistas , Proteína Quinase C/antagonistas & inibidores , Receptores Acoplados a Proteínas G/agonistas , Receptores de Ácidos Lisofosfatídicos/agonistas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA