Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825096

RESUMO

At the onset of lactation in dairy cows, inflammation and oxidative stress may occur and result in a risk of pathologies and lower milk yield. To propose an innovative management strategy for cows during this period, it is essential to better understand these physiological variations. Our objective was to evaluate the metabolic, redox and immune status of 7 primiparous and 8 multiparous Holstein cows during late gestation and the first months of lactation. Blood samples were collected between 3 weeks before calving until 12 weeks postpartum. Milk samples were also collected, but only at the time points after calving. The metabolic (nonesterified fatty acids (NEFA), BHB, glucose, urea, calcium) and redox (reactive oxygen metabolites (ROM), oxidative stress index (OSI), glutathione peroxidase activity, vitamin E) statuses were analyzed in plasma or erythrocytes. The expression of genes related to antioxidant functions was determined in leukocytes collected from milk. For immune status, plasma cytokine levels and the production of reactive oxygen species (ROS) in classical and regulatory neutrophils were measured in 2 whole blood ex vivo challenges. The data were analyzed using a mixed model that included the fixed effects of parity and week and their interaction. Milk yield, plasma NEFA and BHB in wk 2 and 4 after calving were higher in multiparous cows than in primiparous cows, whereas glucose and calcium tended to be lower. Plasma ROM and OSI levels in wk 8 were higher in multiparous than in primiparous cows. Multiparous cows also displayed higher glutathione peroxidase activity in erythrocytes, and antioxidant transcription factor and superoxide dismutase-1 expression levels in milk leukocytes. Moreover, multiparous cows had higher plasma concentrations of vitamin E but lower plasma levels of cytokines CXCL10, CCL2, IL1Rα and IFNγ. Following ex vivo whole blood stimulation with Escherichia coli, lower IL1α and TNFα levels were measured in multiparous than in primiparous cows. Intracellular ROS production by neutrophils was lower in multiparous than in primiparous cows. These results thus indicated marked physiological changes in wk 8 compared with wk 2 and 4 of lactation. These differences in the physiological status of primiparous and multiparous cows offer interesting perspectives for potential dietary strategies to prevent pathologies which take account of parity and week relative to calving.

2.
BMC Genomics ; 24(1): 680, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957547

RESUMO

BACKGROUND: In dairy cows, diet is one factor that can affect their milk production and composition. However, the effect of feed restriction on milk miRNome has not yet been described. Indeed, milk is the body fluid with the highest RNA concentration, which includes numerous microRNA. Its presence in the four different milk fractions, whole milk, fat globules, mammary epithelial cells and extracellular vesicles, is still poorly documented. This study aimed to describe the effects of different feed restrictions on the miRNome composition of different milk fractions. RESULTS: Two feed restrictions were applied to lactating dairy cows, one of high intensity and one of moderate intensity. 2,896 mature microRNA were identified in the different milk fractions studied, including 1,493 that were already known in the bovine species. Among the 1,096 microRNA that were sufficiently abundant to be informative, the abundance of 1,027 of them varied between fractions: 36 of those were exclusive to one milk fraction. Feed restriction affected the abundance of 155 microRNA, with whole milk and milk extracellular vesicles being the most affected, whereas milk fat globules and exfoliated mammary epithelial cells were little or not affected at all. The high intensity feed restriction led to more microRNA variations in milk than moderate restriction. The target prediction of known microRNA that varied under feed restriction suggested the modification of some key pathways for lactation related to milk fat and protein metabolisms, cell cycle, and stress responses. CONCLUSIONS: This study highlighted that the miRNome of each milk fraction is specific, with mostly the same microRNA composition but with variations in abundance between fractions. These specific miRNomes were affected differently by feed restrictions, the intensity of which appeared to be a major factor modulating milk miRNomes. These findings offer opportunities for future research on the use of milk miRNA as biomarkers of energy status in dairy cows, which is affected by feed restrictions.


Assuntos
Líquidos Corporais , MicroRNAs , Feminino , Bovinos , Animais , Lactação , Leite/metabolismo , Dieta/veterinária , MicroRNAs/genética , MicroRNAs/metabolismo , Ração Animal/análise
3.
Benef Microbes ; 15(3): 275-291, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744435

RESUMO

Bovine mastitis (BM) is a major disease in dairy industry. The current approaches - mainly antibiotic treatments - are not entirely effective and may contribute to antimicrobial resistance dissemination, rising the need for alternative treatment. The present study aims to evaluate the impact of post-milking application of Lacticaseibacillus paracasei CIRM BIA 1542 (Lp1542) on the teat skin (TS) of 20 Holstein cows in mid lactation, in order to reinforce the barrier effect of the microbiota naturally present on the teat. Treatment (Lp1542, iodine or no treatment) was applied post-milking twice a day on the 4 teats of healthy animals for 15 days. Blood and milk samples, and TS swabs were collected at day (D)1, D8, D15 and D26 before morning milking and at D15 before evening milking (D15E) to evaluate Lp1542 impact at the microbial, immune and physiological levels. Lp1542 treatment resulted in a higher lactic acid bacteria and total microbial populations on TS and in foremilk (FM) at D15(E) compared with iodine treatment. Metabarcoding analysis revealed changes in the composition of TS and FM microbiota, beyond a higher Lacticaseibacillus abundance. This included a higher abundance of Actinobacteriota, including Bifidobacterium, and a lower abundance of Pseudomonadota on TS of Lp1542 compared with iodine-treated quarters. In addition, Lp1542 treatment did not trigger any major inflammatory response in the mammary gland, except interleukin 8 production and expression which tended to be slightly higher in Lp1542-treated cows compared with the others. Finally, Lp1542 treatment had no impact on the mammary epithelium functionality (milk yield and composition) and integrity (epithelial cell exfoliation into milk and milk Na+/K+ ratio). Altogether, these results indicate that a topical treatment with Lp1542 is safe with regard to mammary gland physiology and immune system, while impacting its microbiota, inviting us to further explore its effectiveness for mastitis prevention.


Assuntos
Lacticaseibacillus paracasei , Glândulas Mamárias Animais , Mastite Bovina , Microbiota , Leite , Animais , Bovinos/microbiologia , Feminino , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Mastite Bovina/prevenção & controle , Microbiota/efeitos dos fármacos , Leite/microbiologia , Lacticaseibacillus paracasei/fisiologia , Lactação , Probióticos/administração & dosagem , Indústria de Laticínios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA