Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circulation ; 138(12): 1236-1252, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29653926

RESUMO

BACKGROUND: Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS: Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS: pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased ß1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS: Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.


Assuntos
Fibronectinas/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miofibroblastos/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Quinase 1 de Adesão Focal/metabolismo , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Integrina beta1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Fosforilação , Polimerização , Transdução de Sinais/efeitos dos fármacos
2.
Arterioscler Thromb Vasc Biol ; 38(3): 636-644, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29348122

RESUMO

OBJECTIVE: Hematopoietic-derived cells have been reported in heart valves but remain poorly characterized. Interestingly, recent studies reveal infiltration of leukocytes and increased macrophages in human myxomatous mitral valves. Nevertheless, timing and contribution of macrophages in normal valves and myxomatous valve disease are still unknown. The objective is to characterize leukocytes during postnatal heart valve maturation and identify macrophage subsets in myxomatous valve disease. APPROACH AND RESULTS: Leukocytes are detected in heart valves after birth, and their numbers increase during postnatal valve development. Flow cytometry and immunostaining analysis indicate that almost all valve leukocytes are myeloid cells, consisting of at least 2 differentially localized macrophage subsets and dendritic cells. Beginning a week after birth, increased numbers of CCR2+ (C-C chemokine receptor type 2) macrophages are present, consistent with infiltrating populations of monocytes, and macrophages are localized in regions of biomechanical stress in the valve leaflets. Valve leukocytes maintain expression of CD (cluster of differentiation) 45 and do not contribute to significant numbers of endothelial or interstitial cells. Macrophage lineages were examined in aortic and mitral valves of Axin2 KO (knockout) mice that exhibit myxomatous features. Infiltrating CCR2+ monocytes and expansion of CD206-expressing macrophages are localized in regions where modified heavy chain hyaluronan is observed in myxomatous valve leaflets. Similar colocalization of modified hyaluronan and increased numbers of macrophages were observed in human myxomatous valve disease. CONCLUSIONS: Our study demonstrates the heterogeneity of myeloid cells in heart valves and highlights an alteration of macrophage subpopulations, notably an increased presence of infiltrating CCR2+ monocytes and CD206+ macrophages, in myxomatous valve disease.


Assuntos
Linhagem da Célula , Matriz Extracelular/patologia , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/patologia , Macrófagos/patologia , Fatores Etários , Idoso , Animais , Proteína Axina/genética , Proteína Axina/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Valvas Cardíacas/metabolismo , Humanos , Ácido Hialurônico/metabolismo , Lectinas Tipo C/metabolismo , Leucócitos/metabolismo , Leucócitos/patologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Macrófagos/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Fenótipo , Receptores CCR2/metabolismo , Receptores de Superfície Celular/metabolismo
3.
Biol Reprod ; 96(5): 1060-1070, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339687

RESUMO

The observation of pups born from recipient and donor mice after ovariectomy followed by ovarian transplant poses the interesting possibility of an extraovarian source of oocytes. However, whether mammalian adult oocytes reside in extragonadal tissues remains elusive. Using transgenic fluorescent reporter mice and transplantation surgeries, we demonstrate the presence of both donor- and recipient-derived corpora lutea and recovery of both donor- and recipient-derived offspring from ovariectomized mice after transplantation of donor ovaries. A potential region for extraovarian oocytes is the hilum, a ligament-like structure between the ovary and the reproductive tract. Immunofluorescent confocal microscopy of mouse ovaries and reproductive tracts revealed that a population of primordial follicles resides outside the ovary within the hilum. Ovariectomy-only controls confirmed that oocytes remain in the recipient hilum after surgery. These results provide evidence that the hilum is a reserve source of follicles, which likely return to the ovary for maturation and ovulation. By identifying a new follicle reservoir, our study addresses a long-standing question in reproductive biology and contributes to new conceptual knowledge about ovarian function and fertility.


Assuntos
Fertilidade/fisiologia , Oócitos/fisiologia , Ovário/citologia , Ovário/fisiologia , Animais , Feminino , Genótipo , Células Germinativas , Gônadas/citologia , Transplante de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Folículo Ovariano/fisiologia , Ovariectomia , Ovário/transplante , Ovulação , Gravidez
4.
Reproduction ; 153(4): R151-R162, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115580

RESUMO

Intricate cellular and molecular interactions ensure that spermatogonial stem cells (SSCs) proceed in a step-wise differentiation process through spermatogenesis and spermiogenesis to produce sperm. SSCs lie within the seminiferous tubule compartment, which provides a nurturing environment for the development of sperm. Cells outside of the tubules, such as interstitial and peritubular cells, also help direct SSC activity. This review focuses on interstitial (interstitial macrophages, Leydig cells and vasculature) and peritubular (peritubular macrophages and peritubular myoid cells) cells and their role in regulating the SSC self-renewal and differentiation in mammals. Leydig cells, the major steroidogenic cells in the testis, influence SSCs through secreted factors, such as insulin growth factor 1 (IGF1) and colony-stimulating factor 1 (CSF1). Macrophages interact with SSCs through various potential mechanisms, such as CSF1 and retinoic acid (RA), to induce the proliferation or differentiation of SSCs respectively. Vasculature influences SSC dynamics through CSF1 and vascular endothelial growth factor (VEGF) and by regulating oxygen levels. Lastly, peritubular myoid cells produce one of the most well-known factors that is required for SSC self-renewal, glial cell line-derived neurotrophic factor (GDNF), as well as CSF1. Overall, SSC interactions with interstitial and peritubular cells are critical for SSC function and are an important underlying factor promoting male fertility.


Assuntos
Células Intersticiais do Testículo/citologia , Espermatogônias/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Humanos , Masculino , Células-Tronco/citologia
5.
Front Immunol ; 15: 1341745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38765012

RESUMO

Individuals with Kabuki syndrome present with immunodeficiency; however, how pathogenic variants in the gene encoding the histone-modifying enzyme lysine methyltransferase 2D (KMT2D) lead to immune alterations remain poorly understood. Following up on our prior report of KMT2D-altered integrin expression in B-cells, we performed targeted analyses of KMT2D's influence on integrin expression in T-cells throughout development (thymocytes through peripheral T-cells) in murine cells with constitutive- and conditional-targeted Kmt2d deletion. Using high-throughput RNA-sequencing and flow cytometry, we reveal decreased expression (both at the transcriptional and translational levels) of a cluster of leukocyte-specific integrins, which perturb aspects of T-cell activation, maturation, adhesion/localization, and effector function. H3K4me3 ChIP-PCR suggests that these evolutionary similar integrins are under direct control of KMT2D. KMT2D loss also alters multiple downstream programming/signaling pathways, including integrin-based localization, which can influence T-cell populations. We further demonstrated that KMT2D deficiency is associated with the accumulation of murine CD8+ single-positive (SP) thymocytes and shifts in both human and murine peripheral T-cell populations, including the reduction of the CD4+ recent thymic emigrant (RTE) population. Together, these data show that the targeted loss of Kmt2d in the T-cell lineage recapitulates several distinct features of Kabuki syndrome-associated immune deficiency and implicates epigenetic mechanisms in the regulation of integrin signaling.


Assuntos
Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase , Integrinas , Proteína de Leucina Linfoide-Mieloide , Linfócitos T , Animais , Humanos , Camundongos , Anormalidades Múltiplas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Face/anormalidades , Regulação da Expressão Gênica/genética , Doenças Hematológicas , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Integrinas/metabolismo , Integrinas/genética , Ativação Linfocitária/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo , Doenças Vestibulares/genética , Doenças Vestibulares/imunologia , Doenças Vestibulares/metabolismo
6.
Cell Rep ; 37(4): 109885, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706238

RESUMO

Sertoli cells are highly polarized testicular supporting cells that simultaneously nurture multiple stages of germ cells during spermatogenesis. Proper localization of polarity protein complexes within Sertoli cells, including those responsible for blood-testis barrier formation, is vital for spermatogenesis. However, the mechanisms and developmental timing that underlie Sertoli cell polarity are poorly understood. We investigate this aspect of testicular function by conditionally deleting Cdc42, encoding a Rho GTPase involved in regulating cell polarity, specifically in Sertoli cells. Sertoli Cdc42 deletion leads to increased apoptosis and disrupted polarity of juvenile and adult testes but does not affect fetal and postnatal testicular development. The onset of the first wave of spermatogenesis occurs normally, but it fails to progress past round spermatid stages, and by young adulthood, conditional knockout males exhibit a complete loss of spermatogenic cells. These findings demonstrate that Cdc42 is essential for Sertoli cell polarity and for maintaining steady-state sperm production.


Assuntos
Células de Sertoli/enzimologia , Espermátides/enzimologia , Espermatogênese , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Masculino , Camundongos , Proteína cdc42 de Ligação ao GTP/genética
7.
Cell Rep ; 31(2): 107513, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294451

RESUMO

Sertoli cells are supporting cells of the testicular seminiferous tubules, which provide a nurturing environment for spermatogenesis. Adult Sertoli cells are polarized so that they can simultaneously support earlier-stage spermatogenic cells (e.g., spermatogonia) basally and later-stage cells (e.g., spermatids) apically. To test the consequences of disrupting cell polarity in Sertoli cells, we perform a Sertoli-specific conditional deletion of Rac1, which encodes a Rho GTPase required for apicobasal cell polarity. Rac1 conditional knockout adults exhibit spermatogenic arrest at the round spermatid stage, with severe disruption of Sertoli cell polarity, and show increased germline and Sertoli cell apoptosis. Thus, Sertoli Rac1 function is critical for the progression of spermatogenesis but, surprisingly, is dispensable for fetal testicular development, adult maintenance of undifferentiated spermatogonia, and meiotic entry. Our data indicate that Sertoli Rac1 function is required only for certain aspects of spermatogenesis and reveal that there are distinct requirements for cell polarity during cellular differentiation.


Assuntos
Neuropeptídeos/metabolismo , Células de Sertoli/metabolismo , Testículo/citologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/genética , Túbulos Seminíferos/citologia , Células de Sertoli/citologia , Células de Sertoli/patologia , Espermátides/fisiologia , Espermatogênese/genética , Espermatogênese/fisiologia , Espermatogônias/fisiologia , Testículo/crescimento & desenvolvimento , Proteínas rac1 de Ligação ao GTP/genética
8.
Front Immunol ; 11: 616531, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584706

RESUMO

Myeloid-derived suppressor cells (MDSCs) represent a major population controlling T cell immune responses. However, little is known about their molecular requirements for homing and T cell interaction to mediate suppression. Here, we investigated the functional role of the homing and collagen IV receptor VLA-1 (α1ß1-integrin) on in vitro GM-CSF generated murine MDSCs from wild-type (WT) and CD49a/α1-integrin (Itga1-/-) gene-deficient mice. Here, we found that effector (Teff) but not naive (Tn) CD4+ T cells express VLA-1 and monocytes further up-regulated their expression after culture in GM-CSF when they differentiated into the monocytic subset of resting MDSCs (R-MDSCs). Subsequent activation of R-MDSCs by LPS+IFN-γ (A-MDSCs) showed increased in vitro suppressor potential, which was independent of VLA-1. Surprisingly, VLA-1 deficiency did not influence A-MDSC motility or migration on collagen IV in vitro. However, interaction times of Itga1-/- A-MDSCs with Teff were shorter than with WT A-MDSCs on collagen IV but not on fibronectin substrate in vitro. After injection, A-MDSCs homed to the splenic red pulp where they co-localized with Teff and showed immediate suppression already after 6 h as shown by inhibition of T cell proliferation and induction of apoptosis. Injection of A-MDSCs from Itga1-/- mice showed equivalent homing into the spleen but a reduced suppressive effect. Interaction studies of A-MDSCs with Teff in the subcapsular red pulp with intravital two-photon microscopy revealed also here that MDSC motility and migration parameters were not altered by VLA-1 deficiency, but the interaction times with Teff were reduced. Together, our data point to a new role of VLA-1 adhesion to collagen IV as a prerequisite for extended contact times with Teff required for suppression.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Colágeno/metabolismo , Integrina alfa1beta1/metabolismo , Células Supressoras Mieloides/imunologia , Baço/imunologia , Animais , Quimiotaxia de Leucócito/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL
9.
Int J Pharm ; 548(1): 297-304, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29981895

RESUMO

Poor aqueous solubility, chemical instability, and indiscriminate cytotoxicity have limited clinical development of camptothecin (CPT) as potent anticancer therapeutic. This research aimed at fabricating thermoresponsive nanocomposites that enhance solubility and stability of CPT in aqueous milieu and enable stimulus-induced drug release using magnetic hyperthermia. 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG) (1:1, mol/mol) were immobilized on the surface of superparamagnetic Fe3O4 nanoparticles (SPIONs) via high affinity avidin-biotin interactions. Heating behavior was assessed using the MFG-1000 magnetic field generator. Encapsulation efficiency and drug release were quantified by fluorescence spectroscopy. Anticancer efficacy of medicated nanoparticles was measured in vitro using Jurkat cells. The results revealed that drug incorporation did not significantly alter particle size, zeta potential, magnetization, and heating properties of lipid-coated SPIONs. Drug loading efficiency was 93.2 ±â€¯5.1%. Drug release from medicated nanoparticles was significantly faster at temperatures above the lipid transition temperature, reaching 37.8 ±â€¯2.6% of incorporated payload after 12 min under therapeutically relevant hyperthermia (i.e., 42 °C). Medicated SPIONs induced greater cytotoxicity than CPT in solution suggesting synergistic activity of magnetically-induced hyperthermia and drug-induced apoptosis. These results underline the opportunity for thermoresponsive phospholipid-coated SPIONs to enable clinical development of highly lipophilic and chemically unstable drugs such as CPT for stimulus-induced cancer treatment.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita/administração & dosagem , 1,2-Dipalmitoilfosfatidilcolina/administração & dosagem , 1,2-Dipalmitoilfosfatidilcolina/análogos & derivados , 1,2-Dipalmitoilfosfatidilcolina/química , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Humanos , Células Jurkat , Nanopartículas de Magnetita/química , Neoplasias/terapia , Fosfatidilgliceróis/administração & dosagem , Fosfatidilgliceróis/química
10.
Blood Adv ; 1(14): 947-960, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29296736

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) controls proliferation and survival of myeloid cells including monocytes. Here, we describe a time-dependent licensing process driven by GM-CSF in murine Ly6Chigh and human CD14+ monocytes that disables their inflammatory functions and promotes their conversion into suppressor cells. This 2-step licensing of monocytes requires activation of the AKT/mTOR/mTORC1 signaling cascade by GM-CSF followed by signaling through the interferon-γ receptor (IFN-γR)/interferon regulatory factor-1 (IRF-1) pathway. Only licensing-dependent adaptations in Toll-like receptor/inflammasome, IFN-γR, and phosphatidylinositol 3-kinase/AKT/mTOR signaling lead to stabilized expression of inducible nitric oxide synthase by mouse and indoleamine 2,3-dioxygenase (IDO) by human monocytes, which accounts for their suppressor activity. This study suggests various myeloid cells with characteristics similar to those described for monocytic myeloid-derived suppressor cells, Mreg, or suppressor macrophages may arise from licensed monocytes. Markers of GM-CSF-driven monocyte licensing, including p-Akt, p-mTOR, and p-S6, distinguish inflammatory monocytes from potentially suppressive monocytes in peripheral blood of patients with high-grade glioma.

11.
Results Probl Cell Differ ; 58: 101-34, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27300177

RESUMO

Sexual reproduction is dependent on the activity of androgenic steroid hormones to promote gonadal development and gametogenesis. Leydig cells of the testis and theca cells of the ovary are critical cell types in the gonadal interstitium that carry out steroidogenesis and provide key androgens for reproductive organ function. In this chapter, we will discuss important aspects of interstitial androgenic cell development in the gonad, including: the potential cellular origins of interstitial steroidogenic cells and their progenitors; the molecular mechanisms involved in Leydig cell specification and differentiation (including Sertoli-cell-derived signaling pathways and Leydig-cell-related transcription factors and nuclear receptors); the interactions of Leydig cells with other cell types in the adult testis, such as Sertoli cells, germ cells, peritubular myoid cells, macrophages, and vascular endothelial cells; the process of steroidogenesis and its systemic regulation; and a brief discussion of the development of theca cells in the ovary relative to Leydig cells in the testis. Finally, we will describe the dynamics of steroidogenic cells in seasonal breeders and highlight unique aspects of steroidogenesis in diverse vertebrate species. Understanding the cellular origins of interstitial steroidogenic cells and the pathways directing their specification and differentiation has implications for the study of multiple aspects of development and will help us gain insights into the etiology of reproductive system birth defects and infertility.


Assuntos
Androgênios/metabolismo , Diferenciação Celular , Células Intersticiais do Testículo/metabolismo , Ovário/metabolismo , Testículo/metabolismo , Células Tecais/metabolismo , Animais , Feminino , Humanos , Células Intersticiais do Testículo/citologia , Masculino , Ovário/citologia , Testículo/citologia , Células Tecais/citologia
12.
Mech Dev ; 112(1-2): 101-13, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11850182

RESUMO

Previous studies have shown that cell cycle proteins such as retinoblastoma protein (pRB) are essential for cell cycle withdrawal in differentiating lens cells. However, little is known about which factors are critical for cell cycle control in the lens epithelial cells. Here we use the K14 promoter to direct expression of E6 and E7, oncogenes from human papillomavirus type 16, which are known to bind and inactivate p53 and pRB, as molecular tools to study cell cycle regulation in the lens epithelium of transgenic mice. Expression of either gene resulted in increased proliferation and apoptosis, and in the case of E6, a unique epithelial phenotype characterized by multilayering and intercellular vacuoles was observed. Lenses from mice expressing E7 mutants, which are defective in inactivating pRB proteins, were normal and the lens phenotype in the E6 mice was p53-independent. Thus, cell proliferation in the lens epithelium is controlled by multiple factors including, but not necessarily limited to, the pRB family.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Cristalino/embriologia , Proteínas Oncogênicas Virais/biossíntese , Proteínas Repressoras , Animais , Apoptose , Adesão Celular , Ciclo Celular , Diferenciação Celular , Divisão Celular , Cristalinas/metabolismo , Genes p53/genética , Hibridização In Situ , Marcação In Situ das Extremidades Cortadas , Cristalino/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação , Proteínas E7 de Papillomavirus , Fenótipo , Regiões Promotoras Genéticas
13.
J Vis Exp ; (105): e53262, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26556004

RESUMO

Investigating organogenesis in utero is a technically challenging process in placental mammals due to inaccessibility of reagents to embryos that develop within the uterus. A newly developed ex vivo upright droplet culture method provides an attractive alternative to studies performed in utero. The ex vivo droplet culture provides the ability to examine and manipulate cellular interactions and diverse signaling pathways through use of various blocking and activating compounds; additionally, the effects of various pharmacological reagents on the development of specific organs can be studied without unwanted side effects of systemic drug delivery in utero. As compared to other in vitro systems, the droplet culture not only allows for the ability to study three-dimensional morphogenesis and cell-cell interactions, which cannot be reproduced in mammalian cell lines, but also requires significantly less reagents than other ex vivo and in vitro protocols. This paper demonstrates proper mouse fetal organ dissection and upright droplet culture techniques, followed by whole organ immunofluorescence to demonstrate the effectiveness of the method. The ex vivo droplet culture method allows the formation of organ architecture comparable to what is observed in vivo and can be utilized to study otherwise difficult-to-study processes due to embryonic lethality in in vivo models. As a model application system, a small-molecule inhibitor will be utilized to probe the role of vascularization in testicular morphogenesis. This ex vivo droplet culture method is expandable to other fetal organ systems, such as lung and potentially others, although each organ must be extensively studied to determine any organ-specific modifications to the protocol. This organ culture system provides flexibility in experimentation with fetal organs, and results obtained using this technique will help researchers gain insights into fetal development.


Assuntos
Técnicas de Cultura Embrionária/métodos , Técnicas de Cultura de Órgãos/métodos , Animais , Dissecação , Feminino , Pulmão/embriologia , Camundongos , Morfogênese/fisiologia , Organogênese/fisiologia , Gravidez , Transdução de Sinais
14.
Cell Rep ; 12(7): 1107-19, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26257171

RESUMO

The testis produces sperm throughout the male reproductive lifespan by balancing self-renewal and differentiation of spermatogonial stem cells (SSCs). Part of the SSC niche is thought to lie outside the seminiferous tubules of the testis; however, specific interstitial components of the niche that regulate spermatogonial divisions and differentiation remain undefined. We identified distinct populations of testicular macrophages, one of which lies on the surface of seminiferous tubules, in close apposition to areas of tubules enriched for undifferentiated spermatogonia. These macrophages express spermatogonial proliferation- and differentiation-inducing factors, such as colony-stimulating factor 1 (CSF1) and enzymes involved in retinoic acid (RA) biosynthesis. We show that transient depletion of macrophages leads to a disruption in spermatogonial differentiation. These findings reveal an unexpected role for macrophages in the spermatogonial niche in the testis and raise the possibility that macrophages play previously unappreciated roles in stem/progenitor cell regulation in other tissues.


Assuntos
Macrófagos/metabolismo , Espermatogênese , Espermatogônias/citologia , Nicho de Células-Tronco , Testículo/citologia , Animais , Fatores Estimuladores de Colônias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espermatogônias/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Tretinoína/metabolismo
15.
Nanoscale Res Lett ; 8(1): 426, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24134544

RESUMO

Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe3O4 nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe3O4 nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Qr.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA