Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(10): 3794-3812, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32841040

RESUMO

We have developed a macromolecular prodrug platform based on poly(l-lysine succinylated) (PLS) that targets scavenger receptor A1 (SR-A1), a receptor expressed by myeloid and endothelial cells. We demonstrate the selective uptake of PLS by murine macrophage, RAW 264.7 cells, which was eliminated upon cotreatment with the SR-A inhibitor polyinosinic acid (poly I). Further, we observed no uptake of PLS in an SR-A1-deficient RAW 264.7 cell line, even after 24 h incubation. In mice, PLS distributed to lymphatic organs following i.v. injection, as observed by ex vivo fluorescent imaging, and accumulated in lymph nodes following both i.v. and i.d. administrations, based on immunohistochemical analysis with high-resolution microscopy. As a proof-of-concept, the HIV antiviral emtricitabine (FTC) was conjugated to the polymer's succinyl groups via ester bonds, with a drug loading of 14.2% (wt/wt). The prodrug (PLS-FTC) demonstrated controlled release properties in vitro with a release half-life of 15 h in human plasma and 29 h in esterase-inhibited plasma, indicating that drug release occurs through both enzymatic and nonenzymatic mechanisms. Upon incubation of PLS-FTC with human peripheral blood mononuclear cells (PBMCs), the released drug was converted to the active metabolite FTC triphosphate. In a pharmacokinetic study in rats, the prodrug achieved ∼7-19-fold higher concentrations in lymphatic tissues compared to those in FTC control, supporting lymphatic-targeted drug delivery. We believe that the SR-A1-targeted macromolecular PLS prodrug platform has extraordinary potential for the treatment of infectious diseases.


Assuntos
Fármacos Anti-HIV/administração & dosagem , Portadores de Fármacos/química , Infecções por HIV/tratamento farmacológico , Receptores Depuradores Classe A/metabolismo , Animais , Fármacos Anti-HIV/farmacocinética , Liberação Controlada de Fármacos , Emtricitabina/administração & dosagem , Emtricitabina/farmacocinética , Feminino , Meia-Vida , Humanos , Masculino , Camundongos , Poli I/farmacologia , Polilisina/química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Estudo de Prova de Conceito , Células RAW 264.7 , Ratos , Receptores Depuradores Classe A/antagonistas & inibidores , Receptores Depuradores Classe A/genética
2.
J Comput Aided Mol Des ; 25(11): 997-1005, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22042375

RESUMO

Drugs and drug candidates containing a carboxylic acid moiety, including many widely used non-steroidal anti-inflammatory drugs (NSAIDs) are often metabolized to form acyl glucuronides (AGs). NSAIDs such as Ibuprofen are amongst the most widely used drugs on the market, whereas similar carboxylic acid drugs such as Suprofen have been withdrawn due to adverse events. Although the link between these AG metabolites and toxicity is not proven, there is circumstantial literature evidence to suggest that more reactive acyl glucuronides may, in some cases, present a greater risk of exhibiting toxic effects. We wished therefore to rank the reactivity of potential new carboxylate-containing drug candidates, and performed kinetic studies on synthetic acyl glucuronides to benchmark our key compounds. Driven by the desire to quickly rank the reactivity of compounds without the need for lengthy synthesis of the acyl glucuronide, a correlation was established between the degradation half-life of the acyl glucuronide and the half life for the hydrolysis of the more readily available methyl ester derivative. This finding enabled a considerable broadening of chemical property space to be investigated. The need for kinetic measurements was subsequently eliminated altogether by correlating the methyl ester hydrolysis half-life with the predicted (13)C NMR chemical shift of the carbonyl carbon together with readily available steric descriptors in a PLS model. This completely in silico prediction of acyl glucuronide reactivity is applicable within the earliest stages of drug design with low cost and acceptable accuracy to guide intelligent molecular design. This reactivity data will be useful alongside the more complex additional pharmacokinetic exposure and distribution data that is generated later in the drug discovery process for assessing the overall toxicological risk of acidic drugs.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Glucuronídeos/metabolismo , Animais , Desenho de Fármacos , Meia-Vida , Cinética , Espectroscopia de Ressonância Magnética , Masculino , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Ratos , Ratos Sprague-Dawley
3.
Drug Metab Dispos ; 38(12): 2218-25, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20823295

RESUMO

Lung concentrations of a drug are expected to drive the pharmacodynamic response to local inflammation after inhalation delivery, and the only way of determining the efficacious dose has been to measure it directly in animal models. In this study, we present a method to predict efficacious lung doses after inhalation in a rat lipopolysaccharide challenge model from in silico predictions of lung concentration and in vitro measurements only. A quantitative structure-activity relationship (QSAR) model, based on calculated physical properties predicted the partitioning of 34 compounds between lung and plasma. Because it was observed that lung/plasma partitioning correlated with lung concentration, it was possible to use this relationship to predict lung concentration at a given dose and time point. Based on the pharmacokinetic-pharmacodynamic (PKPD) relationship observed, a minimal free lung concentration relative to potency to drive significant inhibition of neutrophilia was established. By using predicted lung concentrations, measured fraction unbound in plasma, and cellular potency, it was possible to estimate an inhaled lung dose that would be expected to achieve this target exposure. These predictions were made for 23 compounds, which were not part of the original QSAR training set, and all except one were predicted to within 3-fold of their measured values. This novel approach shows that by understanding PKPD relationships and drivers for lung affinity after inhalation dosing, it is possible to estimate in vivo lung doses required for efficacy. This methodology provides a useful screening tool to rank candidate compounds and minimizes the use of extensive animal testing.


Assuntos
Pulmão/metabolismo , Administração por Inalação , Animais , Neutrófilos/efeitos dos fármacos , Farmacocinética , Relação Quantitativa Estrutura-Atividade , Ratos , Ratos Sprague-Dawley , Ratos Wistar
4.
J Biomol Screen ; 16(3): 348-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21343602

RESUMO

Lipophilicity is an important parameter for any potential drug candidate. Accurate and efficient lipophilicity measurements facilitate the development of high-quality predictive in silico models that support the design of future drugs. Lipophilicity estimates derived from the traditional 1-octanol/water shake flask techniques have been the most widely employed and are therefore the best understood. This technique can be considered to give a good measure of a compound's lipophilicity, albeit slower and more labor intensive to run compared with some other methodologies. Herein is described and validated an efficient 1-octanol/water shake flask technique that has sufficient capacity to be run as a primary screen within the drug discovery process. This is achieved by the simultaneous measurement of the distribution coefficients of mixtures of up to 10 compounds using high-performance liquid chromatography and tandem mass spectrometry. Concerns regarding ion pair partitioning that could result in erroneous results due to interactions between compounds within a mixture are discussed.


Assuntos
Bioensaio/métodos , Lipídeos/química , Solubilidade , Cromatografia Líquida de Alta Pressão , Metabolismo dos Lipídeos , Reprodutibilidade dos Testes
5.
J Lab Autom ; 16(4): 276-84, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21764023

RESUMO

Aqueous solubility is an important physicochemical parameter for any potential drug candidate, and high-throughput kinetic assays are frequently used in drug discovery to give an estimate of a compound's aqueous solubility. However, the aqueous solubility data from an equilibrium (thermodynamic) shake-flask technique is considered more relevant, but is slower and more labor intensive to generate. A highly automated aqueous equilibrium solubility shake-flask technique is described and validated on a set of 15 marketed drugs, whose aqueous solubilities cover four orders of magnitude. The assay uses a Tecan Freedom Evo 200 liquid handling robot (Tecan Group Ltd., Männerdorf, Switzerland) with integrated appliances for the transportation, decapping and recapping, and centrifugation of sample tubes. These bespoke automation solutions help overcome the labor intensive steps associated with performing conventional, gold standard, aqueous equilibrium solubility shake-flask measurements, enabling the assay to be used as a primary-wave drug discovery screen.


Assuntos
Automação Laboratorial/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Preparações Farmacêuticas/química , Descoberta de Drogas , Glibureto/química , Ensaios de Triagem em Larga Escala/normas , Modelos Lineares , Modelos Químicos , Reprodutibilidade dos Testes , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA