Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Genet ; 13(4): e1006739, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28422960

RESUMO

Accurate methods to assess the pathogenicity of mutations are needed to fully leverage the possibilities of genome sequencing in diagnosis. Current data-driven and bioinformatics approaches are, however, limited by the large number of new variations found in each newly sequenced genome, and often do not provide direct mechanistic insight. Here we demonstrate, for the first time, that saturation mutagenesis, biophysical modeling and co-variation analysis, performed in silico, can predict the abundance, metabolic stability, and function of proteins inside living cells. As a model system, we selected the human mismatch repair protein, MSH2, where missense variants are known to cause the hereditary cancer predisposition disease, known as Lynch syndrome. We show that the majority of disease-causing MSH2 mutations give rise to folding defects and proteasome-dependent degradation rather than inherent loss of function, and accordingly our in silico modeling data accurately identifies disease-causing mutations and outperforms the traditionally used genetic disease predictors. Thus, in conclusion, in silico biophysical modeling should be considered for making genotype-phenotype predictions and for diagnosis of Lynch syndrome, and perhaps other hereditary diseases.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Proteínas de Ligação a DNA/genética , Proteína 2 Homóloga a MutS/genética , Dobramento de Proteína , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Simulação por Computador , Proteínas de Ligação a DNA/química , Estudos de Associação Genética , Predisposição Genética para Doença , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Instabilidade de Microssatélites , Proteína 2 Homóloga a MutS/química , Mutação de Sentido Incorreto/genética , Conformação Proteica
2.
PLoS Genet ; 10(1): e1004140, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24497846

RESUMO

Cells are regularly exposed to stress conditions that may lead to protein misfolding. To cope with this challenge, molecular chaperones selectively target structurally perturbed proteins for degradation via the ubiquitin-proteasome pathway. In mammals the co-chaperone BAG-1 plays an important role in this system. BAG-1 has two orthologues, Bag101 and Bag102, in the fission yeast Schizosaccharomyces pombe. We show that both Bag101 and Bag102 interact with 26S proteasomes and Hsp70. By epistasis mapping we identify a mutant in the conserved kinetochore component Spc7 (Spc105/Blinkin) as a target for a quality control system that also involves, Hsp70, Bag102, the 26S proteasome, Ubc4 and the ubiquitin-ligases Ubr11 and San1. Accordingly, chromosome missegregation of spc7 mutant strains is alleviated by mutation of components in this pathway. In addition, we isolated a dominant negative version of the deubiquitylating enzyme, Ubp3, as a suppressor of the spc7-23 phenotype, suggesting that the proteasome-associated Ubp3 is required for this degradation system. Finally, our data suggest that the identified pathway is also involved in quality control of other kinetochore components and therefore likely to be a common degradation mechanism to ensure nuclear protein homeostasis and genome integrity.


Assuntos
Instabilidade Genômica , Cinetocoros , Chaperonas Moleculares/genética , Proteólise , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
3.
J Biol Chem ; 290(34): 21141-21153, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26152728

RESUMO

A mutation, L166P, in the cytosolic protein, PARK7/DJ-1, causes protein misfolding and is linked to Parkinson disease. Here, we identify the fission yeast protein Sdj1 as the orthologue of DJ-1 and calculate by in silico saturation mutagenesis the effects of point mutants on its structural stability. We also map the degradation pathways for Sdj1-L169P, the fission yeast orthologue of the disease-causing DJ-1 L166P protein. Sdj1-L169P forms inclusions, which are enriched for the Hsp104 disaggregase. Hsp104 and Hsp70-type chaperones are required for efficient degradation of Sdj1-L169P. This also depends on the ribosome-associated E3 ligase Ltn1 and its co-factor Rqc1. Although Hsp104 is absolutely required for proteasomal degradation of Sdj1-L169P aggregates, the degradation of already aggregated Sdj1-L169P occurs independently of Ltn1 and Rqc1. Thus, our data point to soluble Sdj1-L169P being targeted early by Ltn1 and Rqc1. The fraction of Sdj1-L169P that escapes this first inspection then forms aggregates that are subsequently cleared via an Hsp104- and proteasome-dependent pathway.


Assuntos
Adenosina Trifosfatases/metabolismo , Coenzimas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas Oncogênicas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Coenzimas/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteína Desglicase DJ-1 , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/genética
4.
BMC Cell Biol ; 15: 31, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25078495

RESUMO

BACKGROUND: In mammalian cells, ASPL is involved in insulin-stimulated redistribution of the glucose transporter GLUT4 and assembly of the Golgi apparatus. Its putative yeast orthologue, Ubx4, is important for proteasome localization, endoplasmic reticulum-associated protein degradation (ERAD), and UV-induced degradation of RNA polymerase. RESULTS: Here, we show that ASPL is a cofactor of the hexameric ATPase complex, known as p97 or VCP in mammals and Cdc48 in yeast. In addition, ASPL interacts in vitro with NSF, another hexameric ATPase complex. ASPL localizes to the ER membrane. The central area in ASPL, containing both a SHP box and a UBX domain, is required for binding to the p97 N-domain. Knock-down of ASPL does not impair degradation of misfolded secretory proteins via the ERAD pathway. Deletion of UBX4 in yeast causes cycloheximide sensitivity, while ubx4 cdc48-3 double mutations cause proteasome mislocalization. ASPL alleviates these defects, but not the impaired ERAD. CONCLUSIONS: In conclusion, ASPL and Ubx4 are homologous proteins with only partially overlapping functions. Both interact with p97/Cdc48, but while Ubx4 is important for ERAD, ASPL appears not to share this function.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Degradação Associada com o Retículo Endoplasmático , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/análise , Proteínas de Transporte/análise , Proteínas de Transporte/genética , Deleção de Genes , Técnicas de Inativação de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mutação , Proteínas Nucleares/análise , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/genética , Complexo de Endopeptidases do Proteassoma/análise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
5.
Nucleic Acids Res ; 40(2): 837-46, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21965533

RESUMO

Deadenylation is the first and rate-limiting step during turnover of mRNAs in eukaryotes. In the yeast, Saccharomyces cerevisiae, two distinct 3'-5' exonucleases, Pop2p and Ccr4p, have been identified within the Ccr4-NOT deadenylase complex, belonging to the DEDD and Exonuclease-Endonuclease-Phosphatase (EEP) families, respectively. Ngl3p has been identified as a new member of the EEP family of exonucleases based on sequence homology, but its activity and biological roles are presently unknown. Here, we show using in vitro deadenylation assays on defined RNA species mimicking poly-A containing mRNAs that yeast Ngl3p is a functional 3'-5' exonuclease most active at slightly acidic conditions. We further show that the enzyme depends on divalent metal ions for activity and possesses specificity towards poly-A RNA similar to what has been observed for cellular deadenylases. The results suggest that Ngl3p is naturally involved in processing of poly-adenylated RNA and provide insights into the mechanistic variations observed among the redundant set of EEP enzymes found in yeast and higher eukaryotes.


Assuntos
Exorribonucleases/metabolismo , Poli A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Exorribonucleases/genética , Deleção de Genes , Conformação de Ácido Nucleico , Poli G/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
6.
Cell Stress Chaperones ; 22(1): 143-154, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27966061

RESUMO

As a result of exposure to stress conditions, mutations, or defects during synthesis, cellular proteins are prone to misfold. To cope with such partially denatured proteins, cells mount a regulated transcriptional response involving the Hsf1 transcription factor, which drives the synthesis of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2, binds Bag101 and Bag102 and key residues in the Hsp70 ATPase domains, required for interaction with Bag101 and Bag102, were identified. In humans, BAG-1 overexpression is typically observed in cancers. Overexpression of bag101 and bag102 in fission yeast leads to a strong growth defect caused by triggering Hsp70 to release and activate the Hsf1 transcription factor. Accordingly, the bag101-linked growth defect is alleviated in strains containing a reduced amount of Hsf1 but aggravated in hsp70 deletion strains. In conclusion, we propose that the fission yeast UBL/BAG proteins release Hsf1 from Hsp70, leading to constitutive Hsf1 activation and growth defects.


Assuntos
Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Fatores de Transcrição de Choque Térmico/genética , Resposta ao Choque Térmico , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Análise de Componente Principal , Complexo de Endopeptidases do Proteassoma/metabolismo , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética , Temperatura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Methods Mol Biol ; 1449: 421-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27613054

RESUMO

The ubiquitin-proteasome system is the major pathway for intracellular protein degradation in eukaryotic cells. Due to the large number of genes dedicated to the ubiquitin-proteasome system, mapping degradation pathways for short lived proteins is a daunting task, in particular in mammalian cells that are not genetically tractable as, for instance, a yeast model system. Here, we describe a method relying on high-throughput cellular imaging of cells transfected with a targeted siRNA library to screen for components involved in degradation of a protein of interest. This method is a rapid and cost-effective tool which is also highly applicable for other studies on gene function.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Interferente Pequeno/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/genética
8.
Biomolecules ; 4(3): 646-61, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25010148

RESUMO

In their natural environment, cells are regularly exposed to various stress conditions that may lead to protein misfolding, but also in the absence of stress, misfolded proteins occur as the result of mutations or failures during protein synthesis. Since such partially denatured proteins are prone to aggregate, cells have evolved several elaborate quality control systems to deal with these potentially toxic proteins. First, various molecular chaperones will seize the misfolded protein and either attempt to refold the protein or target it for degradation via the ubiquitin-proteasome system. The degradation of misfolded proteins is clearly compartmentalized, so unique degradation pathways exist for misfolded proteins depending on whether their subcellular localization is ER/secretory, mitochondrial, cytosolic or nuclear. Recent studies, mainly in yeast, have shown that the nucleus appears to be particularly active in protein quality control. Thus, specific ubiquitin-protein ligases located in the nucleus, target not only misfolded nuclear proteins, but also various misfolded cytosolic proteins which are transported to the nucleus prior to their degradation. In comparison, much less is known about these mechanisms in mammalian cells. Here we highlight recent advances in our understanding of nuclear protein quality control, in particular regarding substrate recognition and proteasomal degradation.


Assuntos
Núcleo Celular/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Humanos , Proteínas Nucleares/química , Dobramento de Proteína
9.
PLoS One ; 7(11): e50548, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209776

RESUMO

In eukaryotic cells an uncleavable ubiquitin moiety conjugated to the N-terminus of a protein signals the degradation of the fusion protein via the proteasome-dependent ubiquitin fusion degradation (UFD) pathway. In yeast the molecular mechanism of the UFD pathway has been well characterized. Recently the human E3 ubiquitin-protein ligase TRIP12 was connected with the UFD pathway, but little is otherwise known about this system in mammalian cells. In the present work, we utilized high-throughput imaging on cells transfected with a targeted siRNA library to identify components involved in degradation of the UFD substrate Ub(G76V)-YFP. The most significant hits from the screen were the E3 ubiquitin-protein ligase HUWE1, as well as PSMD7 and PSMD14 that encode proteasome subunits. Accordingly, knock down of HUWE1 led to an increase in the steady state level and a retarded degradation of the UFD substrate. Knock down of HUWE1 also led to a stabilization of the physiological UFD substrate UBB(+1). Precipitation experiments revealed that HUWE1 is associated with both the Ub(G76V)-YFP substrate and the 26S proteasome, indicating that it functions late in the UFD pathway. Double knock down of HUWE1 and TRIP12 resulted in an additive stabilization of the substrate, suggesting that HUWE1 and TRIP12 function in parallel during UFD. However, even when both HUWE1 and TRIP12 are downregulated, ubiquitylation of the UFD substrate was still apparent, revealing functional redundancy between HUWE1, TRIP12 and yet other ubiquitin-protein ligases.


Assuntos
Proteínas de Transporte/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Western Blotting , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Eletroforese , Humanos , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
10.
Antioxid Redox Signal ; 15(8): 2265-99, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21314436

RESUMO

In their natural environments, cells are regularly exposed to oxidizing conditions that may lead to protein misfolding. If such misfolded proteins are allowed to linger, they may form insoluble aggregates and pose a serious threat to the cell. Accumulation of misfolded, oxidatively damaged proteins is characteristic of many diseases and during aging. To counter the adverse effects of oxidative stress, cells can initiate an antioxidative response in an attempt to repair the damage, or rapidly channel the damaged proteins for degradation by the ubiquitin-proteasome system (UPS). Recent studies have shown that elements of the oxidative stress response and the UPS are linked on many levels. To manage the extra burden of misfolded proteins, the UPS is induced by oxidative stress, and special proteasome subtypes protect cells against oxidative damage. In addition, the proteasome is directly associated with a thioredoxin and other cofactors that may adjust the particle's response during an oxidative challenge. Here, we give an overview of the UPS and a detailed description of the degradation of oxidized proteins and of the crosstalk between oxidative stress and protein degradation in health and disease.


Assuntos
Estresse Oxidativo/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Animais , Humanos , Oxirredução , Estresse Oxidativo/genética , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA