Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(19): e111, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36018788

RESUMO

Modelling both primary sequence and secondary structure preferences for RNA binding proteins (RBPs) remains an ongoing challenge. Current models use varied RNA structure representations and can be difficult to interpret and evaluate. To address these issues, we present a universal RNA motif-finding/scanning strategy, termed PRIESSTESS (Predictive RBP-RNA InterpretablE Sequence-Structure moTif regrESSion), that can be applied to diverse RNA binding datasets. PRIESSTESS identifies dozens of enriched RNA sequence and/or structure motifs that are subsequently reduced to a set of core motifs by logistic regression with LASSO regularization. Importantly, these core motifs are easily visualized and interpreted, and provide a measure of RBP secondary structure specificity. We used PRIESSTESS to interrogate new HTR-SELEX data for 23 RBPs with diverse RNA binding modes and captured known primary sequence and secondary structure preferences for each. Moreover, when applying PRIESSTESS to 144 RBPs across 202 RNA binding datasets, 75% showed an RNA secondary structure preference but only 10% had a preference besides unpaired bases, suggesting that most RBPs simply recognize the accessibility of primary sequences.


Assuntos
Algoritmos , Proteínas de Ligação a RNA , Sítios de Ligação , Proteínas de Ligação a RNA/metabolismo , Motivos de Nucleotídeos , RNA/química , Ligação Proteica
2.
NAR Genom Bioinform ; 5(2): lqad031, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37035540

RESUMO

Cleavage and polyadenylation (CPA) sites define eukaryotic gene ends. CPA sites are associated with five key sequence recognition elements: the upstream UGUA, the polyadenylation signal (PAS), and U-rich sequences; the CA/UA dinucleotide where cleavage occurs; and GU-rich downstream elements (DSEs). Currently, it is not clear whether these sequences are sufficient to delineate CPA sites. Additionally, numerous other sequences and factors have been described, often in the context of promoting alternative CPA sites and preventing cryptic CPA site usage. Here, we dissect the contributions of individual sequence features to CPA using standard discriminative models. We show that models comprised only of the five primary CPA sequence features give highest probability scores to constitutive CPA sites at the ends of coding genes, relative to the entire pre-mRNA sequence, for 59% of all human genes. U1-hybridizing sequences provide a small boost in performance. The addition of all known RBP RNA binding motifs to the model increases this figure to only 61%, suggesting that additional factors beyond the core CPA machinery have a minimal role in delineating real from cryptic sites. To our knowledge, this high effectiveness of established features to predict human gene ends has not previously been documented.

3.
Sci Rep ; 13(1): 5238, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002329

RESUMO

Thousands of RNA-binding proteins (RBPs) crosslink to cellular mRNA. Among these are numerous unconventional RBPs (ucRBPs)-proteins that associate with RNA but lack known RNA-binding domains (RBDs). The vast majority of ucRBPs have uncharacterized RNA-binding specificities. We analyzed 492 human ucRBPs for intrinsic RNA-binding in vitro and identified 23 that bind specific RNA sequences. Most (17/23), including 8 ribosomal proteins, were previously associated with RNA-related function. We identified the RBDs responsible for sequence-specific RNA-binding for several of these 23 ucRBPs and surveyed whether corresponding domains from homologous proteins also display RNA sequence specificity. CCHC-zf domains from seven human proteins recognized specific RNA motifs, indicating that this is a major class of RBD. For Nudix, HABP4, TPR, RanBP2-zf, and L7Ae domains, however, only isolated members or closely related homologs yielded motifs, consistent with RNA-binding as a derived function. The lack of sequence specificity for most ucRBPs is striking, and we suggest that many may function analogously to chromatin factors, which often crosslink efficiently to cellular DNA, presumably via indirect recruitment. Finally, we show that ucRBPs tend to be highly abundant proteins and suggest their identification in RNA interactome capture studies could also result from weak nonspecific interactions with RNA.


Assuntos
Proteínas de Ligação a RNA , RNA , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Proteínas Ribossômicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Motivos de Ligação ao RNA/genética , Ligação Proteica , Fatores de Regulação Miogênica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA