Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Appl Opt ; 62(13): 3398-3408, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37132840

RESUMO

Suppressing Fresnel reflections from dielectric boundaries using periodic and random antireflection structured surfaces (ARSSs) has been vigorously studied as an alternative to thin film coatings for high-power laser applications. A starting point in the design of ARSS profiles is effective medium theory (EMT), approximating the ARSS layer with a thin film of a specific effective permittivity, which has features with subwavelength transverse-scale dimensions, independent of their relative mutual positions or distributions. Using rigorous coupled-wave analysis, we studied the effects of various pseudo-random deterministic transverse feature distributions of ARSS on diffractive surfaces, analyzing the combined performance of the quarter-wave height nanoscale features, superimposed on a binary 50% duty cycle grating. Various distribution designs were investigated at 633 nm wavelength for TE and TM polarization states at normal incidence, comparable to EMT fill fractions for a fused silica substrate in air. The results show differences in performance between ARSS transverse feature distributions, exhibiting better overall performance for subwavelength and near-wavelength scaled unit cell periodicities with short auto-correlation lengths, in comparison to equivalent effective permittivity designs that have less complicated profiles. We conclude that structured layers of quarter-wavelength depth and specific feature distributions can outperform conventional periodic subwavelength gratings as antireflection treatments on diffractive optical components.

2.
Appl Opt ; 57(16): 4421-4427, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29877388

RESUMO

Random anti-reflecting subwavelength surface structures have been reported to enhance transmission of optical windows and lenses. Specifically, for fused silica substrates, 99.9% specular transmission has been verified by various groups. Diffractive optical elements, such as gratings, also experience net Fresnel losses on both their planar and structured surfaces. We investigated the performance of prefabricated 50% duty-cycle, binary, fused silica linear gratings, with a period of 1.6 µm, before and after application of random anti-reflecting subwavelength surface structures, in order to reduce their initial Fresnel reflectivity. We compared the diffraction order directions and their efficiencies at three test wavelengths: 594, 612, and 633 nm, for both TE(s) and TM(p) incident light polarization states, under three different mountings: normal, first Bragg, and second Bragg incidence. We report transmission enhancement of the sum of all propagating grating orders for all cases tested by factors between 2% and 10%, with reduction of the respective reflected orders by similar ratios. Transmission enhancement of the -2 diffraction order at Bragg incidence suggests that the random etch has different rates between the raised and lowered linear grating topography.

3.
Appl Opt ; 57(30): 8903-8913, 2018 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30461877

RESUMO

An optical-filter-based sensor that was designed to mimic human color vision was recently developed. This sensor uses three mid-infrared optical filters to discriminate between chemicals with similar, strongly overlapping mid-infrared absorption bands. This non-spectroscopic technique requires no spectral scanning. This paper defines the selectivity and specificity of this biomimetic sensor. Receiver operating characteristic curves are presented for each target chemical. These results demonstrate that the sensor is highly selective and can provide discrimination with no false positives for three similar target chemicals-acetone, hexane, and fuel oil-while rejecting potential interferents.

4.
Anal Chem ; 88(23): 11491-11497, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934095

RESUMO

Optical-filter-based chemical sensors have the potential to dramatically alter the field of hazardous materials sensing. Such devices could be constructed using inexpensive components, in a small and lightweight package, for sensing hazardous chemicals in defense, industrial, and environmental applications. Filter-based sensors can be designed to mimic human color vision. Recent developments in this field have used this approach to discriminate between strongly overlapping chemical signatures in the mid-infrared. Reported work relied on using numerically filtered FTIR spectra to model the infrared biomimetic detection methodology. While these findings are encouraging, further advancement of this technique requires the collection and evaluation of directly filtered data, using an optical system without extensive numerical spectral analysis. The present work describes the design and testing of an infrared optical breadboard system that uses the biomimetic mammalian color-detection approach to chemical sensing. The set of chemicals tested includes one target chemical, fuel oil, along with two strongly overlapping interferents, acetone and hexane. The collected experimental results are compared with numerically filtered FTIR spectral data. The results show good agreement between the numerically filtered data model and the data collected using the optical breadboard system. It is shown that the optical breadboard system is operating as expected based on modeling and can be used for sensing and discriminating between chemicals with strongly overlapping absorption bands in the mid-infrared.

5.
Anal Chem ; 87(17): 8798-808, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26266761

RESUMO

Optical filter-based chemical sensing techniques provide a new avenue to develop low-cost infrared sensors. These methods utilize multiple infrared optical filters to selectively measure different response functions for various chemicals, dependent on each chemical's infrared absorption. Rather than identifying distinct spectral features, which can then be used to determine the identity of a target chemical, optical filter-based approaches rely on measuring differences in the ensemble response between a given filter set and specific chemicals of interest. Therefore, the results of such methods are highly dependent on the original optical filter choice, which will dictate the selectivity, sensitivity, and stability of any filter-based sensing method. Recently, a method has been developed that utilizes unique detection vector operations defined by optical multifilter responses, to discriminate between volatile chemical vapors. This method, comparative-discrimination spectral detection (CDSD), is a technique which employs broadband optical filters to selectively discriminate between chemicals with highly overlapping infrared absorption spectra. CDSD has been shown to correctly distinguish between similar chemicals in the carbon-hydrogen stretch region of the infrared absorption spectra from 2800-3100 cm(-1). A key challenge to this approach is how to determine which optical filter sets should be utilized to achieve the greatest discrimination between target chemicals. Previous studies used empirical approaches to select the optical filter set; however this is insufficient to determine the optimum selectivity between strongly overlapping chemical spectra. Here we present a numerical approach to systematically study the effects of filter positioning and bandwidth on a number of three-chemical systems. We describe how both the filter properties, as well as the chemicals in each set, affect the CDSD results and subsequent discrimination. These results demonstrate the importance of choosing the proper filter set and chemicals for comparative discrimination, in order to identify the target chemical of interest in the presence of closely matched chemical interferents. These findings are an integral step in the development of experimental prototype sensors, which will utilize CDSD.

6.
Micromachines (Basel) ; 14(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512630

RESUMO

Diffractive optics are structured optical surfaces that manipulate light based on the principles of interference and diffraction. By carefully designing the diffractive optical elements, the amplitude, phase, direction, and polarization of the transmitted and reflected light can be controlled. It is well-known that the propagation of light through diffractive optics is sensitive to changes in their structural parameters. In this study, a numerical analysis is conducted to evaluate the capabilities of slanted-wire diffraction gratings to function opto-mechanically in the infrared spectral range. The slanted wire array is designed such that it is compatible with fabrication by two-photon polymerization, a direct laser-writing approach. The modeled optical and mechanical capabilities of the diffraction grating are presented. The numerical results demonstrate a high sensitivity of the diffracted light to changes in the slant angle of the wires. The compressive force by which desired slant angles may be achieved as a function of the number of wires in the grating is investigated. The ability to fabricate the presented design using two-photon polymerization is supported by the development of a prototype. The results of this study suggest that slanted-wire gratings fabricated using two-photon polymerization may be effective in applications such as tunable beam splitting and micro-mechanical sensing.

7.
Opt Express ; 20(18): 20558-63, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23037103

RESUMO

We report on a Tm:fiber master oscillator power amplifier (MOPA) system producing 109 W CW output power, with >15 dB polarization extinction ratio, sub-nm spectral linewidth, and M2 <1.25. The system consists of polarization maintaining (PM) fiber and PM-fiber components including tapered fiber bundle pump combiners, a single-mode to large mode area mode field adapter, and a fiber-coupled isolator. The laser components ultimately determine the system architecture and the limits of laser performance, particularly considering the immature and rapidly developing state of fiber components in the 2 µm wavelength regime.


Assuntos
Amplificadores Eletrônicos , Tecnologia de Fibra Óptica/instrumentação , Lasers , Túlio/química , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
8.
Opt Lett ; 36(16): 3293-5, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21847238

RESUMO

We demonstrate the fabrication, simulation, and experimental results of a buried, homogeneous narrowband spectral filter with a periodic, hexagonal unit cell of air pockets, encapsulated in a fused silica substrate. The leaky waveguide is formed by depositing SiO(x) on an etched fused silica grating via plasma-enhanced chemical vapor deposition. Design principles of guided mode resonance filters were utilized to achieve a resonance with 60% reflectivity at a wavelength of 1.741 µm. The device demonstrates resonance with FWHM of 6 nm.

9.
Opt Lett ; 36(7): 1155-7, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21479014

RESUMO

Guided mode resonance (GMR) filters are highly functional micro-optics capable of narrowband spectral filtering. GMR devices have previously been demonstrated on flat substrates using a wide range of materials and configurations. In this Letter, we apply a soft lithographic technique followed by the deposition of dielectric layers to generate GMR filters on a concave lens surface. Resonances of the resulting conformal GMR filters are experimentally measured and characterized, and the results are compared to the performance of similar GMR filters fabricated on flat surfaces.

10.
Opt Lett ; 36(5): 737-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21368966

RESUMO

We used guided-mode resonance filters (GMRFs), fabricated using thin-film deposition and chemical etching, as intracavity feedback elements to stabilize and narrow the output spectrum in thulium-doped fiber oscillators operating in the 2 µm wavelength regime, producing linewidths of <700 pm up to 10 W power levels. A Tm fiber-based amplified spontaneous emission source was used to characterize the reflective properties of the GMRFs. Linewidths of 500 pm and a 7.3 dB reduction in transmission were measured on resonances.

11.
Opt Express ; 18(26): 27764-76, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21197051

RESUMO

We designed, fabricated, and tested, polarization selective, graded-reflectivity resonant filters; based on a radial-gradient spatially-distributed, guided-mode resonance device architecture. The demonstrated filters have polarized spectral-resonance responses, distributed across their aperture extent, in the range between 1535 nm and 1540 nm wavelengths. Spectral sensitivity was observed on device tests, for wavelength changes as low as 0.2 nm. Using multiple lithographic exposures and biasing exposure methods, the devices were engineered to have a sub-aperture region, with no hard boundaries or diffraction anomalies.


Assuntos
Dispositivos Ópticos , Refratometria/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
12.
Opt Express ; 17(22): 20365-75, 2009 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-19997265

RESUMO

Novel all-dielectric beam shaping elements were developed based on guided mode resonance (GMR) filters. This was achieved by spatially varying the duty cycle of a hexagonal-cell GMR filter, to locally detune from the resonant condition, which resulted in modified wavelength dependent reflection and transmission profiles, across the device aperture. This paper presents the design, fabrication, and characterization of the device and compares simulations to experimental results.


Assuntos
Filtração/instrumentação , Lentes , Refratometria/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
13.
Appl Spectrosc ; 73(5): 520-528, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30650986

RESUMO

This paper describes the application of a human color vision approach to infrared (IR) chemical sensing for the discrimination between multiple explosive materials deposited on aluminum substrates. This methodology classifies chemicals using the unique response of the chemical vibrational absorption bands to three broadband overlapping IR optical filters. For this effort, Fourier transform infrared (FT-IR) spectroscopy is first used to computationally examine the ability of the human color vision sensing approach to discriminate between three similar explosive materials, 1,3,5,-Trinitro-1,3,5-triazinane (RDX), 2,2-Bis[(nitrooxy)methyl]propane-1,3,-diyldinitrate (PETN), and 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane (HMX). A description of a laboratory breadboard optical sensor designed for this approach is then provided, along with the discrimination results collected for these samples using this sensor. The results of these studies demonstrate that the human color vision approach is capable of high-confidence discrimination of the examined explosive materials.

14.
Appl Spectrosc ; 69(3): 305-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25665186

RESUMO

We present a comparative discrimination spectral detection approach for the identification of chemical vapors using broad spectral filters. We applied the method to flowing vapors of as-received and non-interacting mixtures for the detection of the volatile components of a target chemical in the presence of interferents. The method is based on measurements of the overall spectral signature of the vapors, where the interferent spectrum largely overlaps the target spectrum. In this work we outline the construction of a set of abstract configuration-space vectors, generated by the broadband spectral components from sampled chemical vapors, and the subsequent vector-space operations between them, which enable the detection of a target chemical by comparative discrimination from interferents. The method was applied to the C-H vibrational band from 2500 to 3500 cm(-1), where there is large spectral signal overlap between the chosen target chemical and two interferents. Our results show clear detection and distinction of the target vapors without ambiguity.


Assuntos
Algoritmos , Filtração/métodos , Gases/química , Reconhecimento Automatizado de Padrão/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Discriminante , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA