RESUMO
Plant immune receptors, known as NOD-like receptors (NLRs), possess unique integrated decoy domains that enable plants to attract pathogen effectors and initiate a specific immune response. The present study aimed to create a library of these integrated domains (IDs) and screen them with pathogen effectors to identify targets for effector virulence and NLR-effector interactions. This works compiles IDs found in NLRs from seven different plant species and produced a library of 78 plasmid clones containing a total of 104 IDs, representing 43 distinct InterPro domains. A yeast two-hybrid assay was conducted, followed by an in planta interaction test, using 32 conserved effectors from Ralstonia pseudosolanacearum type III. Through these screenings, three interactions involving different IDs (kinase, DUF3542, WRKY) were discovered interacting with two unrelated type III effectors (RipAE and PopP2). Of particular interest was the interaction between PopP2 and ID#85, an atypical WRKY domain integrated into a soybean NLR gene (GmNLR-ID#85). Using a Förster resonance energy transfer-fluorescence lifetime imaging microscopy technique to detect protein-protein interactions in living plant cells, PopP2 was demonstrated to physically associate with ID#85 in the nucleus. However, unlike the known WRKY-containing Arabidopsis RRS1-R NLR receptor, GmNLR-ID#85 could not be acetylated by PopP2 and failed to activate RPS4-dependent immunity when introduced into the RRS1-R immune receptor. The generated library of 78 plasmid clones, encompassing these screenable IDs, is publicly available through Addgene. This resource is expected to be valuable for the scientific community with respect to discovering targets for effectors and potentially engineering plant immune receptors.
Assuntos
Proteínas NLR , Proteínas de Plantas , Plantas , Produtos Agrícolas , Técnicas do Sistema de Duplo-Híbrido , Núcleo Celular , Fatores de Transcrição , Proteínas NLR/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Proteínas de Plantas/metabolismo , Biblioteca GênicaRESUMO
[This corrects the article DOI: 10.1371/journal.ppat.1001202.].
RESUMO
Medicago truncatula Nod Factor Perception (MtNFP) plays a role in both the Rhizobium-Legume (RL) symbiosis and plant immunity, and evidence suggests that the immune-related function of MtNFP is relevant for symbiosis. To better understand these roles of MtNFP, we sought to identify new interacting partners. We screened a yeast-2-hybrid cDNA library from Aphanomyces euteiches infected and noninfected M. truncatula roots. The M. truncatula leucine-rich repeat (LRR) receptor-like kinase SUPPRESSOR OF BIR1 (MtSOBIR1) was identified as an interactor of MtNFP and was characterised for kinase activity, and potential roles in symbiosis and plant immunity. We showed that the kinase domain of MtSOBIR1 is active and can transphosphorylate the pseudo-kinase domain of MtNFP. MtSOBIR1 could functionally complement Atsobir1 and Nbsobir1/sobir1-like mutants for defence activation, and Mtsobir1 mutants were defective in immune responses to A. euteiches. For symbiosis, we showed that Mtsobir1 mutant plants had both a strong, early infection defect and defects in the defence suppression in nodules, and both effects were plant genotype- and rhizobial strain-specific. This work highlights a conserved function for MtSOBIR1 in activating defence responses to pathogen attack, and potentially novel symbiotic functions of downregulating defence in association with the control of symbiotic specificity.
RESUMO
Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. We examined the nodulation ability of Medicago truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the Sinorhizobium meliloti nodF/nodL mutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor-like kinase gene in R108, LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in nodulation by mutants producing nonO-acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, natural S. meliloti and S. medicae strains tested require LYK2bis for efficient nodulation of R108. Our findings reveal that a newly evolved gene in R108, LYK2bis, extends nodulation specificity to mutants producing nonO-acetylated NFs and is important for nodulation by many natural Sinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.
Assuntos
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fenótipo , Sinorhizobium meliloti/genética , Simbiose/genéticaRESUMO
Oomycete plant pathogens secrete effector proteins to promote disease. The damaging soilborne legume pathogen Aphanomyces euteiches harbors a specific repertoire of Small Secreted Protein effectors (AeSSPs), but their biological functions remain unknown. Here we characterize AeSSP1256. The function of AeSSP1256 is investigated by physiological and molecular characterization of Medicago truncatula roots expressing the effector. A potential protein target of AeSSP1256 is identified by yeast-two hybrid, co-immunoprecipitation, and fluorescent resonance energy transfer-fluorescence lifetime imaging microscopy (FRET-FLIM) assays, as well as promoter studies and mutant characterization. AeSSP1256 impairs M. truncatula root development and promotes pathogen infection. The effector is localized to the nucleoli rim, triggers nucleoli enlargement and downregulates expression of M. truncatula ribosome-related genes. AeSSP1256 interacts with a functional nucleocytoplasmic plant RNA helicase (MtRH10). AeSSP1256 relocates MtRH10 to the perinucleolar space and hinders its binding to plant RNA. MtRH10 is associated with ribosome-related genes, root development and defense. This work reveals that an oomycete effector targets a plant RNA helicase, possibly to trigger nucleolar stress and thereby promote pathogen infection.
Assuntos
Aphanomyces , Medicago truncatula , Aphanomyces/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , RNA Helicases/genética , RNA de Plantas/metabolismoRESUMO
Rhizobia are bacteria which can either live as free organisms in the soil or interact with plants of the legume family with, as a result, the formation of root organs called nodules in which differentiated endosymbiotic bacteria fix atmospheric nitrogen to the plant's benefit. In both lifestyles, rhizobia are exposed to nitric oxide (NO) which can be perceived as a signaling or toxic molecule. NO can act at the transcriptional level but can also modify proteins by S-nitrosylation of cysteine or nitration of tyrosine residues. However, only a few molecular targets of NO have been described in bacteria and none of them have been characterized in rhizobia. Here, we examined tyrosine nitration of Sinorhizobium meliloti proteins induced by NO. We found three tyrosine-nitrated proteins in S. meliloti grown under free-living conditions, in response to an NO donor. Two nitroproteins were identified by mass spectrometry and correspond to flagellins A and B. We showed that one of the nitratable tyrosines is essential to flagellin function in motility.IMPORTANCE Rhizobia are found as free-living bacteria in the soil or in interaction with plants and are exposed to nitric oxide (NO) in both environments. NO is known to have many effects on animals, plants, and bacteria where only a few molecular targets of NO have been described so far. We identified flagellin A and B by mass spectrometry as tyrosine-nitrated proteins in Sinorhizobium melilotiin vivo We also showed that one of the nitratable tyrosines is essential to flagellin function in motility. The results enhanced our understanding of NO effects on rhizobia. Identification of bacterial flagellin nitration opens a new possible role of NO in plant-microbe interactions.
Assuntos
Flagelina/metabolismo , Estresse Nitrosativo , Sinorhizobium meliloti/metabolismo , Tirosina/metabolismo , Óxido Nítrico/metabolismoRESUMO
Wood, also called secondary xylem, is a specialized vascular tissue constituted by different cell types that undergo a differentiation process involving deposition of thick, lignified secondary cell walls. The mechanisms needed to control the extent of lignin deposition depending on the cell type and the differentiation stage are far from being fully understood. We found that the Eucalyptus transcription factor EgMYB1, which is known to repress lignin biosynthesis, interacts specifically with a linker histone variant, EgH1.3. This interaction enhances the repression of EgMYB1's target genes, strongly limiting the amount of lignin deposited in xylem cell walls. The expression profiles of EgMYB1 and EgH1.3 overlap in xylem cells at early stages of their differentiation as well as in mature parenchymatous xylem cells, which have no or only thin lignified secondary cell walls. This suggests that a complex between EgMYB1 and EgH1.3 integrates developmental signals to prevent premature or inappropriate lignification of secondary cell walls, providing a mechanism to fine-tune the differentiation of xylem cells in time and space. We also demonstrate a role for a linker histone variant in the regulation of a specific developmental process through interaction with a transcription factor, illustrating that plant linker histones have other functions beyond chromatin organization.
Assuntos
Eucalyptus/metabolismo , Histonas/metabolismo , Lignina/biossíntese , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Madeira/metabolismo , Arabidopsis/genética , Diferenciação Celular , Núcleo Celular/metabolismo , Parede Celular/metabolismo , Eucalyptus/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Ligação Proteica , Ativação Transcricional/genética , Xilema/crescimento & desenvolvimento , Xilema/metabolismoRESUMO
Sphinganine or dihydrosphingosine (d18:0, DHS), one of the most abundant free sphingoid long chain bases (LCBs) in plants, is known to induce a calcium-dependent programmed cell death (PCD) in plants. In addition, in tobacco BY-2 cells, it has been shown that DHS triggers a rapid production of H2O2 and nitric oxide (NO). Recently, in analogy to what is known in the animal field, plant cytosolic glyceraldehyde-3-phosphate dehydrogenase (GAPC), a ubiquitous enzyme involved in glycolysis, has been suggested to fulfill other functions associated with its oxidative post-translational modifications such as S-nitrosylation on cysteine residues. In particular, in mammals, stress signals inducing NO production promote S-nitrosylation of GAPC and its subsequent translocation into the nucleus where the protein participates in the establishment of apoptosis. In the present study, we investigated the behavior of GAPC in tobacco BY-2 cells treated with DHS. We found that upon DHS treatment, an S-nitrosylated form of GAPC accumulated in the nucleus. This accumulation was dependent on NO production. Two genes encoding GAPCs, namely Nt(BY-2)GAPC1 and Nt(BY-2)GAPC2, were cloned. Transient overexpression of Nt(BY-2)GAPC-green fluorescent protein (GFP) chimeric constructs indicated that both proteins localized in the cytoplasm as well as in the nucleus. Mutating into serine the two cysteine residues thought to be S-nitrosylated in response to DHS did not modify the localization of the proteins, suggesting that S-nitrosylation of GAPCs was probably not necessary for their nuclear relocalization. Interestingly, using Förster resonance energy transfer experiments, we showed that Nt(BY-2)GAPCs interact with nucleic acids in the nucleus. When GAPCs were mutated on their cysteine residues, their interaction with nucleic acids was abolished, suggesting a role for GAPCs in the protection of nucleic acids against oxidative stress.
Assuntos
Cálcio/farmacologia , Núcleo Celular/enzimologia , Citosol/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Nicotiana/citologia , Óxido Nítrico/farmacologia , Células Vegetais/enzimologia , Esfingosina/análogos & derivados , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Genes de Plantas , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Espectrometria de Massas , Mutação/genética , Nitrosação , Ácidos Nucleicos/metabolismo , Células Vegetais/efeitos dos fármacos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica/efeitos dos fármacos , Esfingosina/farmacologia , Nicotiana/enzimologia , Nicotiana/genéticaRESUMO
Plant and animal pathogens inject type III effectors (T3Es) into host cells to suppress host immunity and promote successful infection. XopD, a T3E from Xanthomonas campestris pv vesicatoria, has been proposed to promote bacterial growth by targeting plant transcription factors and/or regulators. Here, we show that XopD from the B100 strain of X. campestris pv campestris is able to target MYB30, a transcription factor that positively regulates Arabidopsis thaliana defense and associated cell death responses to bacteria through transcriptional activation of genes related to very-long-chain fatty acid (VLCFA) metabolism. XopD specifically interacts with MYB30, resulting in inhibition of the transcriptional activation of MYB30 VLCFA-related target genes and suppression of Arabidopsis defense. The helix-loop-helix domain of XopD is necessary and sufficient to mediate these effects. These results illustrate an original strategy developed by Xanthomonas to subvert plant defense and promote development of disease.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Fatores de Transcrição/metabolismo , Xanthomonas campestris/patogenicidade , Arabidopsis/microbiologia , Regulação da Expressão Gênica de Plantas , Sequências Hélice-Alça-Hélice , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Imunidade Vegetal , Relação Estrutura-Atividade , Virulência , Xanthomonas campestris/metabolismoRESUMO
Molecular mechanisms underlying quantitative variations of pathogenicity remain elusive. Here, we identified the Xanthomonas campestris XopJ6 effector that triggers disease resistance in cauliflower and Arabidopsis thaliana. XopJ6 is a close homolog of the Ralstoniapseudosolanacearum PopP2 YopJ family acetyltransferase. XopJ6 is recognized by the RRS1-R/RPS4 NLR pair that integrates a WRKY decoy domain mimicking effector targets. We identified a XopJ6 natural variant carrying a single residue substitution in XopJ6 WRKY-binding site that disrupts interaction with WRKY proteins. This mutation allows XopJ6 to evade immune perception while retaining some XopJ6 virulence functions. Interestingly, xopJ6 resides in a Tn3-family transposon likely contributing to xopJ6 copy number variation (CNV). Using synthetic biology, we demonstrate that xopJ6 CNV tunes pathogen virulence on Arabidopsis through gene dosage-mediated modulation of xopJ6 expression. Together, our findings highlight how sequence and structural genetic variations restricted at a particular effector gene contribute to bacterial host adaptation.
RESUMO
Fungal effectors (small-secreted proteins) have long been considered as species or even subpopulation-specific. The increasing availability of high-quality fungal genomes and annotations has allowed the identification of trans-species or trans-genera families of effectors. Two avirulence effectors, AvrLm10A and AvrLm10B, of Leptosphaeria maculans, the fungus causing stem canker of oilseed rape, are members of such a large family of effectors. AvrLm10A and AvrLm10B are neighbouring genes, organized in divergent transcriptional orientation. Sequence searches within the L. maculans genome showed that AvrLm10A/AvrLm10B belong to a multigene family comprising five pairs of genes with a similar tail-to-tail organization. The two genes, in a pair, always had the same expression pattern and two expression profiles were distinguished, associated with the biotrophic colonization of cotyledons and/or petioles and stems. Of the two protein pairs further investigated, AvrLm10A_like1/AvrLm10B_like1 and AvrLm10A_like2/AvrLm10B_like2, the second one had the ability to physically interact, similarly to what was previously described for the AvrLm10A/AvrLm10B pair, and cross-interactions were also detected for two pairs. AvrLm10A homologues were identified in more than 30 Dothideomycete and Sordariomycete plant-pathogenic fungi. One of them, SIX5, is an effector from Fusarium oxysporum f. sp. lycopersici physically interacting with the avirulence effector Avr2. We found that AvrLm10A/SIX5 homologues were associated with at least eight distinct putative effector families, suggesting that AvrLm10A/SIX5 is able to cooperate with different effectors. These results point to a general role of the AvrLm10A/SIX5 proteins as "cooperating proteins", able to interact with diverse families of effectors whose encoding gene is co-regulated with the neighbouring AvrLm10A homologue.
Assuntos
Ascomicetos , Brassica napus , Fusarium , Ascomicetos/genética , Fusarium/genética , Proteínas/genética , Brassica napus/microbiologia , Família Multigênica , Doenças das Plantas/microbiologiaRESUMO
The current agriculture main challenge is to maintain food production while facing multiple threats such as increasing world population, temperature increase, lack of agrochemicals due to health issues and uprising of weeds resistant to herbicides. Developing novel, alternative, and safe methods is hence of paramount importance. Here, we show that complementary peptides (cPEPs) from any gene can be designed to target specifically plant coding genes. External application of synthetic peptides increases the abundance of the targeted protein, leading to related phenotypes. Moreover, we provide evidence that cPEPs can be powerful tools in agronomy to improve plant traits, such as growth, resistance to pathogen or heat stress, without the needs of genetic approaches. Finally, by combining their activity they can also be used to reduce weed growth.
Assuntos
Agroquímicos , Controle de Plantas Daninhas , Agroquímicos/farmacologia , Resistência a Herbicidas/genética , Plantas Daninhas/genética , Peptídeos , Produtos Agrícolas/genéticaRESUMO
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as "guards". The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/metabolismo , Imunidade Inata/imunologia , Lisina/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal , Ralstonia solanacearum/metabolismo , Acetilação , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Western Blotting , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismo , Fluorescência , Regulação da Expressão Gênica de Plantas , Lisina/genética , Lisina/imunologia , Dados de Sequência Molecular , Mutação/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , RNA Mensageiro/genética , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de AminoácidosRESUMO
By combining Zinnia elegans in vitro tracheary element genomics with reverse genetics in Arabidopsis, we have identified a new upstream component of secondary wall formation in xylary and interfascicular fibers. Walls are thin 1 (WAT1), an Arabidopsis thaliana homolog of Medicago truncatula NODULIN 21 (MtN21), encodes a plant-specific, predicted integral membrane protein, and is a member of the plant drug/metabolite exporter (P-DME) family (transporter classification number: TC 2.A.7.3). Although WAT1 is ubiquitously expressed throughout the plant, its expression is preferentially associated with vascular tissues, including developing xylem vessels and fibers. WAT1:GFP fusion protein analysis demonstrated that WAT1 is localized to the tonoplast. Analysis of wat1 mutants revealed two cell wall-related phenotypes in stems: a defect in cell elongation, resulting in a dwarfed habit and little to no secondary cell walls in fibers. Secondary walls of vessel elements were unaffected by the mutation. The secondary wall phenotype was supported by comparative transcriptomic and metabolomic analyses of wat1 and wild-type stems, as many transcripts and metabolites involved in secondary wall formation were reduced in abundance. Unexpectedly, these experiments also revealed a modification in tryptophan (Trp) and auxin metabolism that might contribute to the wat1 phenotype. Together, our data demonstrate an essential role for the WAT1 tonoplast protein in the control of secondary cell wall formation in fibers.
Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Parede Celular , Medicago truncatula/genética , Proteínas de Membrana Transportadoras/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Dados de Sequência MolecularRESUMO
Plant cell walls have complex architectures made of polysaccharides among which cellulose, hemicelluloses, pectins and cell wall proteins (CWPs). Some CWPs are anchored in the plasma membrane through a glycosylphosphatidylinositol (GPI)-anchor. The secretion pathway is the classical route to reach the extracellular space. Based on experimental data, a canonical signal peptide (SP) has been defined, and bioinformatics tools allowing the prediction of the sub-cellular localization of proteins have been designed. In the same way, the presence of GPI-anchor attachment sites can be predicted using bioinformatics programs. This article aims at comparing the bioinformatics predictions of the sub-cellular localization of proteins assumed to be CWPs to mass spectrometry (MS) data. The sub-cellular localization of a few CWPs exhibiting particular features has been checked by cell biology approaches. Although the prediction of SP length is confirmed in most cases, it is less conclusive for GPI-anchors. Three main observations were done: (i) the variability observed at the N-terminus of a few mature CWPs could play a role in the regulation of their biological activity; (ii) one protein was shown to have a double sub-cellular localization in the cell wall and the chloroplasts; and (iii) peptides were found to be located at the C-terminus of several CWPs previously identified in GPI-anchored proteomes, thus raising the issue of their actual anchoring to the plasma membrane.
Assuntos
Parede Celular/química , Parede Celular/metabolismo , Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteômica/métodosRESUMO
The ability of phenolic compounds to autofluoresce upon illumination by UV or blue light was exploited to explore the nature and distribution of these metabolites within the flower petals, leaves and roots of the violet, Viola alba subsp. dehnhardtii. This was achieved through a dual complementary approach that combined fluorescence microscopy imaging of living intact tissues and chemical extraction of pulverized material. The blue to red fluorescence displayed by living tissues upon illumination was indicative of their richness in phenolic compounds. Phenolic acids were found in all tissues, while flavonoids characterized the aerial part of the plant, anthocyanidins being restricted to the petals. The chemical quantification of phenolics in plant extracts confirmed their tissue-specific distribution and abundance. A key finding was that the spectral signatures obtained through confocal microscopy of endogenous fluorophores in living tissues and their counterpart extracts share the same fluorescence patterns, pointing out the potential of fluorescence imaging of intact organs for a proper estimation of their phenolic content. In addition, this study highlighted a few distinct morphology cell types, in particular foliar-glandular-like structures, and jagged petal cell walls. Altogether, these data provide a comprehensive histochemical localization of phenolics in living tissues of a violet. Converting fluorescence imaging into a chemical imprint indicated that one can rely on fluorescence microscopy of intact living tissues as a rapid, non-destructive means to follow their phenolic imprint under various environmental conditions.
RESUMO
The Yersinia outer protein J (YopJ) family effectors are widely deployed through the type III secretion system by both plant and animal pathogens. As non-canonical acetyltransferases, the enzymatic activities of YopJ family effectors are allosterically activated by the eukaryote-specific ligand inositol hexaphosphate (InsP6). However, the underpinning molecular mechanism remains undefined. Here we present the crystal structure of apo-PopP2, a YopJ family member secreted by the plant pathogen Ralstonia solanacearum. Structural comparison of apo-PopP2 with the InsP6-bound PopP2 reveals a substantial conformational readjustment centered in the substrate-binding site. Combining biochemical and computational analyses, we further identify a mechanism by which the association of InsP6 with PopP2 induces an α-helix-to-ß-strand transition in the catalytic core, resulting in stabilization of the substrate recognition helix in the target protein binding site. Together, our study uncovers the molecular basis governing InsP6-mediated allosteric regulation of YopJ family acetyltransferases and further expands the paradigm of fold-switching proteins.
Assuntos
Acetiltransferases/química , Apoproteínas/química , Arabidopsis/microbiologia , Proteínas de Bactérias/química , Ácido Fítico/química , Ralstonia solanacearum/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Regulação Alostérica , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Ácido Fítico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Ralstonia solanacearum/enzimologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Nicotiana/microbiologiaRESUMO
Calmodulin (CaM) plays a crucial role in the regulation of diverse cellular processes by modulating the activities of numerous target proteins. Plants possess an extended CaM family including numerous CaM-like proteins (CMLs), most of which appear to be unique to plants. We previously demonstrated a role for CML9 in abiotic stress tolerance and seed germination in Arabidopsis thaliana. We report here the isolation of PRR2, a pseudo-response regulator as a CML9 interacting protein by screening an expression library prepared from Arabidopsis seedlings with CML9 as bait in a yeast two-hybrid system. PRR2 is similar to the response regulators of the two-component system, but lacks the invariant residue required for phosphorylation by which response regulators switch their output response, suggesting the existence of alternative regulatory mechanisms. PRR2 was found to bind CML9 and closely related CMLs but not a canonical CaM. Mapping analyses indicate that an almost complete form of PRR2 is required for interaction with CML9, suggesting a recognition mode different from the classical CaM-target peptide complex. PRR2 contains several features that are typical of transcription factors, including a GARP DNA recognition domain, a Pro-rich region and a Golden C-terminal box. PRR2 and CML9 as fusion proteins with fluorescent tags co-localized in the nucleus of plant cells, and their interaction in the nuclear compartment was validated in planta by using a fluorophore-tagged protein interaction assay. These findings suggest that binding of PRR2 to CML9 may be an important mechanism to modulate the physiological role of this transcription factor in plants.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Calmodulina/genética , Proteínas de Transporte/genética , Técnicas do Sistema de Duplo-HíbridoRESUMO
Intestinal organoids are self-organized 3-dimensional (3D) structures formed by a single layer of polarized epithelial cells. This innovative in vitro model is highly relevant to study physiology of the intestinal epithelium and its role in nutrition and barrier function. However, this model has never been developed in rabbits, while it would have potential applications for biomedical and veterinary research. Here, we cultured rabbit caecum organoids with either pharmacological inhibitors (2Ki medium) or L-WRN cells conditioned medium (L-WRN CM) to reconstitute the intestinal stem cell niche in vitro. Large spherical organoids were obtained with the 2Ki medium and this morphology was associated with a high level of proliferation and stem cells markers gene expression. In contrast, organoids cultured with L-WRN CM had a smaller diameter; a greater cell height and part of them were not spherical. When the L-WRN CM was used at low concentration (5%) for two days, the gene expression of stem cells and proliferation markers were very low, while absorptive and secretory cells markers and antimicrobial peptides were elevated. Epithelial cells within organoids were polarized in 3D cultures with 2Ki medium or L-WRN CM (apical side towards the lumen). We cultured dissociated organoid cells in 2D monolayers, which allowed accessibility to the apical compartment. Under these conditions, actin stress fibers were observed with the 2Ki medium, while perijonctionnal localization of actin was observed with the L-WRN CM suggesting, in 2D cultures as well, a higher differentiation level in the presence of L-WRN CM. In conclusion, rabbit caecum organoids cultured with the 2Ki medium were more proliferative and less differentiated than organoids cultured with L-WRN CM. We propose that organoids cultured with the 2Ki medium could be used to rapidly generate in vitro a large number of rabbit intestinal epithelial stem cells while organoids cultured with the L-WRN CM used at low concentration represent a suitable model to study differentiated rabbit epithelium.