RESUMO
BACKGROUND AND AIMS: Hepatocytes were the first cell type for which oscillations of cytoplasmic calcium levels in response to hormones were described. Since then, investigation of calcium dynamics in liver explants and culture has greatly increased our understanding of calcium signaling. A bottleneck, however, exists in observing calcium dynamics in a noninvasive manner because of the optical inaccessibility of the mammalian liver. Here, we aimed to take advantage of the transparency of the zebrafish larvae to image hepatocyte calcium dynamics in vivo at cellular resolution. APPROACH AND RESULTS: We developed a transgenic model expressing a calcium sensor, GCaMP6s, specifically in zebrafish hepatocytes. Using this, we provide a quantitative assessment of intracellular calcium dynamics during multiple contexts, including growth, feeding, ethanol-induced stress, and cell ablation. Specifically, we show that synchronized calcium oscillations are present in vivo , which are lost upon starvation. Starvation induces lipid accumulation in the liver. Feeding recommences calcium waves in the liver, but in a spatially restricted manner, as well as resolves starvation-induced hepatic steatosis. By using a genetically encoded scavenger for calcium, we show that dampening of calcium signaling accelerates the accumulation of starvation-related lipid droplets in the liver. Furthermore, ethanol treatment, as well as cell ablation, induces calcium flux, but with different dynamics. The former causes asynchronous calcium oscillations, whereas the latter leads to a single calcium spike. CONCLUSIONS: We demonstrate the presence of oscillations, waves, and spikes in vivo . Calcium waves are present in response to nutrition and negatively regulate starvation-induced accumulation of lipid droplets.
Assuntos
Inanição , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Cálcio/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Etanol/farmacologia , Sinalização do Cálcio , Inanição/metabolismo , Mamíferos/metabolismoRESUMO
The thyroid gland regulates growth and metabolism via production of thyroid hormone in follicles composed of thyrocytes. So far, thyrocytes have been assumed to be a homogenous population. To uncover heterogeneity in the thyrocyte population and molecularly characterize the non-thyrocyte cells surrounding the follicle, we developed a single-cell transcriptome atlas of the region containing the zebrafish thyroid gland. The 6249-cell atlas includes profiles of thyrocytes, blood vessels, lymphatic vessels, immune cells, and fibroblasts. Further, the thyrocytes show expression heterogeneity, including bimodal expression of the transcription factor pax2a. To validate thyrocyte heterogeneity, we generated a CRISPR/Cas9-based pax2a knock-in line that monitors pax2a expression in the thyrocytes. A population of pax2a-low mature thyrocytes interspersed in individual follicles can be distinguished. We corroborate heterogeneity within the thyrocyte population using RNA sequencing of pax2a-high and pax2a-low thyrocytes, which demonstrates 20% differential expression in transcriptome between the two subpopulations. Our results identify and validate transcriptional differences within the presumed homogenous thyrocyte population.
Assuntos
Células Epiteliais da Tireoide , Glândula Tireoide , Animais , Perfilação da Expressão Gênica , Transcriptoma , Peixe-Zebra/genéticaRESUMO
Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that while surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Further, down-regulation of FATP2 in drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionary conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.
RESUMO
Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that although surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Furthermore, down-regulation of FATP2 in Drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionarily conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.
Assuntos
Fígado Gorduroso , Inanição , Animais , Humanos , Peixe-Zebra , Fígado Gorduroso/genética , Inanição/complicações , Larva , AtrofiaRESUMO
The atypical cannabinoid Abn-CBD improves the inflammatory status in preclinical models of several pathologies, including autoimmune diseases. However, its potential for modulating inflammation in autoimmune type 1 diabetes (T1D) is unknown. Herein we investigate whether Abn-CBD can modulate the inflammatory response during T1D onset using a mouse model of T1D (non-obese diabetic- (NOD)-mice) and of beta cell damage (streptozotocin (STZ)-injected mice). Six-week-old female NOD mice were treated with Abn-CBD (0.1-1 mg/kg) or vehicle during 12 weeks and then euthanized. Eight-to-ten-week-old male C57Bl6/J mice were pre-treated with Abn-CBD (1 mg/kg of body weight) or vehicle for 1 week, following STZ challenge, and euthanized 1 week later. Blood, pancreas, pancreatic lymph nodes (PLNs) and T cells were collected and processed for analysis. Glycemia was also monitored. In NOD mice, treatment with Abn-CBD significantly reduced the severity of insulitis and reduced the pro-inflammatory profile of CD4+ T cells compared to vehicle. Concomitantly, Abn-CBD significantly reduced islet cell apoptosis and improved glucose tolerance. In STZ-injected mice, Abn-CBD decreased circulating proinflammatory cytokines and ameliorated islet inflammation reducing intra-islet phospho-NF-κB and TXNIP. Abn-CBD significantly reduced 2 folds intra-islet CD8+ T cells and reduced Th1/non-Th1 ratio in PLNs of STZ-injected mice. Islet cell apoptosis and intra-islet fibrosis were also significantly reduced in Abn-CBD pre-treated mice compared to vehicle. Altogether, Abn-CBD reduces circulating and intra-islet inflammation, preserving islets, thus delaying the progression of insulitis. Hence, Abn-CBD and related compounds emerge as new candidates to develop pharmacological strategies to treat the early stages of T1D.
Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Inflamação/tratamento farmacológico , Resorcinóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Progressão da Doença , Feminino , Teste de Tolerância a Glucose , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , EstreptozocinaRESUMO
Background and Aims: The synthetic atypical cannabinoid Abn-CBD, a cannabidiol (CBD) derivative, has been recently shown to modulate the immune system in different organs, but its impact in obesity-related meta-inflammation remains unstudied. We investigated the effects of Abn-CBD on metabolic and inflammatory parameters utilizing a diet-induced obese (DIO) mouse model of prediabetes and non-alcoholic fatty liver disease (NAFLD). Materials and Methods: Ten-week-old C57Bl/6J mice were fed a high-fat diet for 15 weeks, following a 2-week treatment of daily intraperitoneal injections with Abn-CBD or vehicle. At week 15 mice were obese, prediabetic and developed NAFLD. Body weight and glucose homeostasis were monitored. Mice were euthanized and blood, liver, adipose tissue and pancreas were collected and processed for metabolic and inflammatory analysis. Results: Body weight and triglycerides profiles in blood and liver were comparable between vehicle- and Abn-CBD-treated DIO mice. However, treatment with Abn-CBD reduced hyperinsulinemia and markers of systemic low-grade inflammation in plasma and fat, also promoting white adipose tissue browning. Pancreatic islets from Abn-CBD-treated mice showed lower apoptosis, inflammation and oxidative stress than vehicle-treated DIO mice, and beta cell proliferation was induced. Furthermore, Abn-CBD lowered hepatic fibrosis, inflammation and macrophage infiltration in the liver when compared to vehicle-treated DIO mice. Importantly, the balance between hepatocyte proliferation and apoptosis was improved in Abn-CBD-treated compared to vehicle-treated DIO mice. Conclusions: These results suggest that Abn-CBD exerts beneficial immunomodulatory actions in the liver, pancreas and adipose tissue of DIO prediabetic mice with NAFLD, thus protecting tissues. Therefore, Abn-CBD and related compounds could represent novel pharmacological strategies for managing obesity-related metabolic disorders.
Assuntos
Tecido Adiposo/efeitos dos fármacos , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/patologia , Pâncreas/efeitos dos fármacos , Estado Pré-Diabético/patologia , Resorcinóis/farmacologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Citoproteção/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Inflamação/etiologia , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Pâncreas/metabolismo , Pâncreas/patologia , Estado Pré-Diabético/tratamento farmacológico , Estado Pré-Diabético/etiologia , Estado Pré-Diabético/metabolismo , Resorcinóis/uso terapêuticoRESUMO
Calcium imaging has emerged as a powerful tool for studying cellular dynamics, with applications spanning neuroscience, cell biology, and beyond. In this chapter, we present a comprehensive guide to the computational analysis of calcium flux data using the R programming language. Using an example of in vivo live imaging of GCaMP signal in zebrafish hepatocytes, we demonstrate techniques for segmentation, normalization, and quantification of calcium transients. We provide a step-by-step code example showcasing extraction of meaningful information from calcium imaging datasets. The code allows insights into the number of oscillating cells, number of oscillations per cell within a time frame, and generation of publication-ready plots for showcasing calcium dynamics. This chapter serves as a valuable resource for researchers seeking to leverage freely available computational tools for analyzing calcium flux data at cellular resolution and uncovering novel insights into cellular physiology.