Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(30): 21945-21953, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38989246

RESUMO

The innovation introduced in this study consists of replacing toluene with safer solvents such as cyclopentane or diethyl ether in the processing of a preceramic polycarbosilane (allylhydridopolycarbosilane, AHPCS) and assessing its impact on the functionalisation of B4C powders to produce B4C/SiC composites. Fourier-transform infrared (FT-IR) with ATR and nuclear magnetic resonance (NMR) spectroscopy revealed no major modification in the polymer structure. SEC/MALS analysis showed a slight change in the number-average molar mass of the polymer regardless of the functionalisation solvent used in correlation with a slight decrease in the polymer ceramic yield due to oligomer loss. The thermal behaviour of the preceramic polymer investigated via mass spectrometry remained unaffected by the solvent change. The search for polymer residues after distillation highlighted the recyclability of both the functionalisation solvent and the polymer, despite a slight increase in the molar mass of the polymer. Finally, the sinterability of B4C/AHPCS samples was studied with the preparation of B4C/SiC composites via a polymer-derived ceramic (PDC) route and spark plasma sintering (SPS). The effect of the solvent on the microstructure and relative density of the specimens (>92%) is negligible. The specimens retain a fine and homogeneous phase distribution despite process modification. The results highlight the approach developed to use greener solvents for the chemical synthesis of functionalised ceramics and represent a step towards the generalisation of more environmentally friendly processes.

2.
Materials (Basel) ; 15(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407732

RESUMO

Aluminum nitride (AlN) ceramics were prepared by both Hot-pressing (HP) and Spark-Plasma-Sintering (SPS) using cerium oxide as the sintering aid. The characterization of AlN raw powder denoted the presence of an amorphous layer that led to the formation of aluminum oxide. During the sintering process, CeO2 introduced as a sintering aid was reduced into Ce2O3. The latter reacted with aluminum oxide to form a transient liquid phase that promotes sintering by both HP and SPS. A reactional path leading to the formation of secondary phases, such as CeAlO3 and CeAl11O18, has been proposed according to the pseudo-binary Al2O3 - Ce2O3. Ceramics obtained from HP and SPS are presented as similar, except for the secondary-phase distribution. The influences of secondary phase composition and distribution on electrical conductivity were evaluated by leakage current measurements. The mechanism of DC conduction and the global conductivity of ceramics were discussed according to the sintering process and the number of secondary phases.

3.
Materials (Basel) ; 15(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36143721

RESUMO

A complete methodology combining experiments and modeling has been developed to investigate the constrained sintering of low-temperature cofired ceramic (LTCC) systems. The thermomechanical and sintering behavior laws, previously identified for the selected commercial LTCC material, were implemented in a finite element model. The reliability and validity range of the built model has been investigated thanks to the development of a specific distortion experience. The distortion generated during the constrained sintering of a porous LTCC layer deposited on a dense one has been monitored in situ by ombroscopy. The measured camber evolution was compared with numerical results. The camber phenomena predicted numerically and observed experimentally are very similar, characterized by the onset of distortion around 918 K and a similar evolution during heating. However, at high temperatures (around 1100 K), the simulated camber slightly differs from the experimental one. It seems to be related to the damage to the dense LTCC layer by microcracking.

4.
Materials (Basel) ; 15(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744156

RESUMO

Spark Plasma Sintering (SPS) has become a conventional and promising sintering method for powder consolidation. This study aims to well understand the mechanisms of densification encountered during SPS treatments, especially in the early stages of sintering. The direct current (DC) electrical behavior of copper granular medium is characterized. Their properties are correlated with their microstructural evolutions through post-mortem scanning electron microscope (SEM) observations to allow a thorough understanding of the involved Branly effect that is suspected to occur in SPS. The electrical response is studied by modifying the initial thickness of the oxide layer on particles surfaces and applying various mechanical loads on the granular medium. Without load and at low current, the measured quasi-reversible behavior is connected to the formation of spots at the microcontacts between the particles. By increasing the current, the Branly transition from an insulating to a conductive state suddenly occurs. The insulating oxide layer is destroyed, and micro-bridges are created. The application of a mechanical pressure strongly modifies the DC Branly effect. Increasing low stress leads to a strong decrease in the breakdown field. For high-applied pressure, successive drops in the electric field are detected during the electrical transition. These successive drops are induced by microcracking of the insulating oxide layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA