Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Pharm ; 17(1): 284-300, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31794223

RESUMO

Therapeutic protein depots have limited clinical success because of the presence of critical preparation barriers such as low encapsulation, uncontrolled release, and activity loss during processing and storage. In the present study, we used our novel protein-nanoencapsulation (into sugar-glass nanoparticle; SGnP) platform to prepare a protein depot to overcome the abovementioned formidable challenges. The SGnP-mediated microparticle protein depot has been validated using four model proteins (bovine serum albumin, horseradish peroxidase, fibroblastic growth factor, and epidermal growth factor) and model biodegradable poly(lactic-co-glycolic acid) polymer system. The results show that our protein-nanoencapsulation-mediated platform provides a new generic platform to prepare a protein depot through the conventional emulsion method of any polymer and single/multiple protein systems. This protein depot has the required pharmaceutical properties such as high encapsulation efficiency, burst-free sustained release, and protein preservation during processing and storage, making it suitable for off-the-shelf use in therapeutic protein delivery and tissue engineering applications.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Proteínas/administração & dosagem , Preparações de Ação Retardada/química , Composição de Medicamentos/métodos , Emulsões , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Vidro/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Células MCF-7 , Microscopia Eletrônica de Varredura , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proteínas/química , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Esferoides Celulares/efeitos dos fármacos , Açúcares
2.
PLoS Pathog ; 12(9): e1005816, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27583406

RESUMO

Infection of the genitourinary tract with Group B Streptococcus (GBS), an opportunistic gram positive pathogen, is associated with premature rupture of amniotic membrane and preterm birth. In this work, we demonstrate that GBS produces membrane vesicles (MVs) in a serotype independent manner. These MVs are loaded with virulence factors including extracellular matrix degrading proteases and pore forming toxins. Mice chorio-decidual membranes challenged with MVs ex vivo resulted in extensive collagen degradation leading to loss of stiffness and mechanical weakening. MVs when instilled vaginally are capable of anterograde transport in mouse reproductive tract. Intra-amniotic injections of GBS MVs in mice led to upregulation of pro-inflammatory cytokines and inflammation mimicking features of chorio-amnionitis; it also led to apoptosis in the chorio-decidual tissue. Instillation of MVs in the amniotic sac also resulted in intrauterine fetal death and preterm delivery. Our findings suggest that GBS MVs can independently orchestrate events at the feto-maternal interface causing chorio-amnionitis and membrane damage leading to preterm birth or fetal death.


Assuntos
Ruptura Prematura de Membranas Fetais/microbiologia , Nascimento Prematuro/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/fisiologia , Âmnio/microbiologia , Âmnio/patologia , Líquido Amniótico/microbiologia , Animais , Linhagem Celular Tumoral , Corioamnionite/microbiologia , Corioamnionite/patologia , Citocinas/metabolismo , Decídua/microbiologia , Decídua/patologia , Modelos Animais de Doenças , Feminino , Ruptura Prematura de Membranas Fetais/patologia , Humanos , Inflamação , Camundongos , Gravidez , Nascimento Prematuro/patologia , Sorogrupo , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/patologia , Streptococcus agalactiae/imunologia
3.
Nano Lett ; 15(2): 842-8, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25554860

RESUMO

We report biodegradable plasmon resonant liposome gold nanoparticles (LiposAu NPs) capable of killing cancer cells through photothermal therapy. The pharmacokinetic study of LiposAu NPs performed in a small animal model indicates in situ degradation in hepatocytes and further getting cleared through the hepato-biliary and renal route. Further, the therapeutic potential of LiposAu NPs tested in mouse tumor xenograft model using NIR laser (750 nm) illumination resulted in complete ablation of the tumor mass, thus prolonging disease-free survival.


Assuntos
Materiais Biocompatíveis , Ouro/química , Hipertermia Induzida , Lipossomos , Nanopartículas Metálicas/uso terapêutico , Neoplasias/terapia , Fototerapia , Animais , Linhagem Celular Tumoral , Terapia Combinada , Modelos Animais de Doenças , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Nanosci Nanotechnol ; 14(6): 4082-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738355

RESUMO

Dual stimuli pH and temperature-responsive nanohydrogels based on poly(N-isopropylacrylamide)-chitosan have been synthesized. Fe3O4 magnetic nanoparticles (NPs) (-12 nm) have been incorporated into hydrogels to achieve temperature optimized magnetic nanohydrogel (MNHG) for magnetic hyperthermia with lower critical solution temperature, LCST > 42 degrees C. The composite was further investigated for its potential application in drug delivery and in vitro cancer cell cytotoxicity. Water-bath assisted drug release studies were carried out using anti-cancer drug doxorubicin (DOX) in acetate buffer medium (pH - 4.6) to mimic tumor cell environment which is slightly acidic in nature. The pH and temperature responsiveness of the system was demonstrated by DOX release under different conditions. The released amount of DOX was found to be nearly 4 microg/mg above hyperthermia temperature (-42 degrees C) as opposed to only 1.9 microg/mg of MNHG at physiological temperature (37 degrees C) under acidic environment (pH - 4.6). Further, AC magnetic field (AMF) induced heating of NPs entrapped inside hydrogels showed appreciable reduction of cell population in human breast (MCF-7) and cervical carcinoma (HeLa) cell lines for given duration of field exposures. Quantitatively, death percentages of HeLa cells were nearly 35 and 45% while for MCF-7, these were 20 and 70% when exposed to AMF for 10 and 30 min, respectively. Further the cell killing efficacy of MNHG loaded with DOX was assessed under AMF using HeLa cell lines. The AMF induced heat triggered DOX release from the MNHG which enhances the cell death up to 85% due to combined effect of thermo-chemotherapeutics. The present system with both pH and temperature responsivity serves as a promising candidate for a combination therapy.


Assuntos
Doxorrubicina/administração & dosagem , Hidrogéis/química , Hipertermia Induzida/métodos , Magnetoterapia/métodos , Nanopartículas de Magnetita/uso terapêutico , Nanocápsulas/administração & dosagem , Neoplasias Experimentais/terapia , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Terapia Combinada , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas de Magnetita/química , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Neoplasias Experimentais/patologia , Temperatura , Resultado do Tratamento
5.
Sci Immunol ; 8(85): eadg0033, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506197

RESUMO

Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. IFNmod treatment resulted in a potent reduction in SARS-CoV-2 viral loads both in vitro in Calu-3 cells and in vivo in bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes of RMs. Furthermore, in SARS-CoV-2-infected RMs, IFNmod treatment potently reduced inflammatory cytokines, chemokines, and CD163+ MRC1- inflammatory macrophages in BAL and expression of Siglec-1 on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. Using an intervention targeting both IFN-α and IFN-ß pathways, this study shows that, whereas early IFN-I restrains SARS-CoV-2 replication, uncontrolled IFN-I signaling critically contributes to SARS-CoV-2 inflammation and pathogenesis in the moderate disease model of RMs.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Interferon Tipo I/farmacologia , SARS-CoV-2 , Macaca mulatta , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Inflamação/tratamento farmacológico
6.
Nanoscale ; 14(25): 9112-9123, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35722896

RESUMO

This study reports a hybrid lipo-polymeric nanosystem (PDPC NPs) synthesized by a modified hydrogel-isolation technique. The ability of the nanosystem to encapsulate hydrophilic and hydrophobic molecules has been demonstrated, and their enhanced cellular uptake has been observed in vitro. The PDPC NPs, surface coated with gold by in situ reduction of chloroauric acid (PDPC-Au NPs), showed a photothermal transduction efficacy of ∼65%. The PDPC-Au NPs demonstrated an increase in intracellular ROS, triggered DNA damage and resulted in apoptotic cell death when tested against breast cancer cells (MCF-7). The disintegration of PDPC-Au NPs into smaller nanoparticles with near-infrared (NIR) laser irradiation was understood using transmission electron microscopy imaging. The lipo-polymeric hybrid nanosystem exhibited plasmon-enhanced fluorescence when loaded with IR780 (a NIR dye), followed by surface coating with gold (PDPC-IR-Au NPs). This paper is one of the first reports on the plasmon-enhanced fluorescence within a nanosystem by simple surface coating of Au, to the best of our knowledge. This plasmon-enhanced fluorescence was unique to the lipo-polymeric hybrid system, as the same was not observed with a liposomal nanosystem. The plasmon-enhanced fluorescence of PDPC-IR-Au NPs, when applied for imaging cancer cells and zebrafish embryos, showed a strong fluorescence signal at minimal concentrations of the dye. The PDPC-IR-Au NPs were also applied for photothermal therapy of breast cancer in vitro and in vivo, and the results depicted significant therapeutic benefits.


Assuntos
Neoplasias da Mama , Ouro , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Fototerapia/métodos , Terapia Fototérmica , Polímeros/química , Polímeros/farmacologia , Peixe-Zebra
7.
ACS Chem Neurosci ; 12(11): 1989-2002, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008959

RESUMO

The pathological aggregation of tau is one of the major contributing factors for several neurodegenerative tauopathies, including Alzheimer's disease. Here, we report that C1, a synthetic derivative of curcumin, strongly inhibited both the aggregation and filament formation of purified tau and protected neuroblastoma cells from the deleterious effects of the tau oligomers. Using confocal microscopy, C1 was found to reduce both the size and number of the tau droplets and increased the critical concentration of tau required for the droplet formation in vitro indicating that C1 suppressed the liquid-liquid phase separation of tau. C1 inhibited the aggregation of tau with a half-maximal inhibitory concentration of 1.5 ± 0.1 µM. An analysis of the aggregation kinetics data indicated that C1 strongly reduced the initial rate of the aggregation of tau. A dot blot analysis using tau-oligomer-specific antibody indicated that C1 inhibited the oligomerization of tau. Furthermore, dynamic light scattering experiments suggested that C1 strongly reduced the mean diameter of the tau oligomers. Atomic force microscopy experiments showed that C1 treatment reduced both the size and number of tau oligomers, suppressed the transition of tau oligomers into filaments, and also disintegrated preformed tau filaments. Also, the binding interaction of C1 with tau was monitored using absorbance and fluorescence spectroscopy. C1 bound to Y310W-tau with a dissociation constant of 2.0 ± 0.5 µM. The findings suggested that C1 is a potent inhibitor of tau aggregation and provided insights into the inhibitory mechanism of C1 on the oligomerization and fibril formation of tau.


Assuntos
Doença de Alzheimer , Curcumina , Neuroblastoma , Tauopatias , Curcumina/farmacologia , Humanos , Proteínas tau
8.
ACS Appl Bio Mater ; 4(4): 3670-3685, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35014452

RESUMO

Cancer stem-like cells (CSCs) have emerged as an important target for breast cancer therapy owing to their self-renewability, proliferation, and elevated chemoresistance properties. Here, we present a strategy of eliminating CSCs by differentiation therapy where "forced differentiation" reprograms CSCs so that they lose their intrinsic properties and become susceptible for conventional chemotherapeutic drugs. In this study, we report that a conventional chemotherapeutic paclitaxel enhances the stemness of CSCs, while a phytochemical forskolin being essentially nontoxic to CSCs possesses the intrinsic ability to reprogram them. To achieve simultaneous targeting of CSCs and bulk tumor cells, we used a co-delivery system where liquid crystal nanoparticles (LCN) were co-encapsulated with both paclitaxel and forskolin. LCN showed higher uptake, retention, and penetration potential in CSCs overcoming their high drug efflux property. Moreover, LCN improved the pharmacokinetic parameters of forskolin, which otherwise had very low retention and bioavailability. Forskolin-loaded LCN forced CSCs to exit from their mesenchymal state, which reduced their stemness and chemosensitized them while inhibiting E-cadherin-mediated survival and tumor-initiating potential as well as reversing paclitaxel-induced stemness. We further showed that upon administration of paclitaxel and forskolin co-loaded LCN to an orthotropic xenograft mouse model, the nanomedicine showed enhanced passive tumor targeting capability with very potent antitumor activity that eradicated small solid tumor in a single dose and showed no sign of tumor relapse or systemic toxicity over a long period. Overall, these findings give a proof of concept that co-delivery of forskolin and paclitaxel in a single nanoformulation can achieve overall tumor targeting where forskolin can efficiently reprogram/differentiate CSCs and paclitaxel can induce cytotoxicity in both differentiated CSCs and bulk tumor cells simultaneously. Hence, this study can provide a nanoformulation that can offer an efficient strategy for cancer therapy.


Assuntos
Colforsina/química , Nanopartículas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colforsina/metabolismo , Colforsina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Cristais Líquidos/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Paclitaxel/química , Paclitaxel/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Distribuição Tecidual , Transplante Heterólogo
9.
Colloids Surf B Biointerfaces ; 202: 111702, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33780906

RESUMO

C1, a synthetic analog of curcumin, has been reported to show potent antiproliferative effects against a variety of cancer cells. Here, we report a strong anticancer activity of the folate receptor-targeted lipid nanoparticle formulation of C1 against cancer cells and cancer stem cells both in 2D culture and 3D spheroids. The size of the C1 encapsulated folic acid functionalized nanoliposomes (Lipos-C1) was determined to be 83 ± 17 nm. Lipos-C1 nanoparticles displayed sustained C1 release kinetics at both pH 7.4 and 5.5. The folate receptor (FR) targeted nanoliposomes were internalized into FR-positive KB cells via the folate receptor-mediated endocytosis process. Lipos-C1 killed KB cells much more efficiently than C1. Lipos-C1 depolymerized microtubules, generated ROS, caused DNA damage, and induced apoptosis in KB cells. Importantly, Lipos-C1 strongly inhibited the growth of the 3D KB spheroids than C1. Interestingly, Lipos-C1 also suppressed cancer stem cells (CSCs) enriched MCF-7 mammosphere growth by impeding breast cancer stem cells (BCSCs) enrichment, growth, and proliferation. The results suggested that Lipos-C1 could be a promising nanoformulation for cancer chemotherapy.


Assuntos
Neoplasias da Mama , Curcumina , Nanopartículas , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Curcumina/farmacologia , Feminino , Ácido Fólico , Humanos , Células MCF-7 , Células-Tronco Neoplásicas
10.
Colloids Surf B Biointerfaces ; 190: 110927, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32169777

RESUMO

Lipid Nanocapsules (LNCs) have been used for drug delivery in cells and animal models for several years. LNCs with unique physicochemical properties for favorable biorecognition, biocompatibility and stimuli responsive (pH/temperature etc.) properties i.e., smart-LNCs, are most promising for future nanomedicine applications. However, conventional phase inversion temperature (PIT) method of LNCs preparation may not be suitable for the fabrication of thermally labile drug loaded LNCs and smart-LNCs. Herein, we report for the first time, a novel low temperature (LT) method for the preparation of LNCs (including smart-LNCs of size 25-150 nm), hereafter, named as nanostructure hybrid lipid capsules (nHLCs), comprising safe excipients such as oil (Labrafac™ PG), surfactant (Kolliphor® HS 15, Brij® S100), and lipid (Lipoid S-75, Lipoid S PC-3, Lipoid PE 18:1/18:1, Lipoid PC 16:0/16:0 etc.). Effects of process parameters on the physicochemical properties of nHLCs were probed to optimize the process. Ternary phase diagram shows that our method allows for great flexibility in the formation of nHLCs with tailored size and composition. This method resulted in drug loaded (regorafenib used as model drug) nHLCs with 95 % encapsulation efficiency and sustained release profile at 37 °C. The drug loaded nHLCs (as prepared or in lyophilized form) has excellent storage stability at 4 °C (for more than one month) as well as biocompatibility similar to that of LNCs prepared by PIT method. Our novel LT method of LNCs (i.e. nHLCs) preparation is a generic method for the development of drug loaded (including thermally labile) and smart-LNCs for future nanomedicine applications.


Assuntos
Materiais Biocompatíveis/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanoestruturas/química , Compostos de Fenilureia/química , Piridinas/química , Temperatura , Cápsulas/química , Tamanho da Partícula , Propriedades de Superfície
11.
ACS Appl Bio Mater ; 2(12): 5727-5738, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-35021566

RESUMO

Photothermal therapy (PTT) is emerging as an effective treatment modality for cancer due to its noninvasive nature. However, the pro-inflammatory necrotic cell death during PTT limits its successful clinical application. Here, we have developed quercetin (QE)-loaded biodegradable plasmonic nanoparticles that can specifically induce apoptosis in cancer cells after PTT. We have synthesized gold-coated liposome (LiposAu) and QE-loaded gold-coated liposome (QE-LiposAu) nanoparticles by in situ reduction of chloroauric acid with ascorbic acid in the presence of bare liposomes (Lipos) or QE-loaded liposomes (QE-Lipos), respectively. The gold coating was confirmed by transmission electron microscopic analysis, dynamic light scattering, and ζ potential measurements. LiposAu and QE-LiposAu nanoparticles showed a similar level of temperature rise upon 750 nm near-infrared (NIR) laser (650 mW, 3 W cm-2) irradiation. The photothermal conversion efficiency of QE-LiposAu nanoparticles was determined to be ∼75%. The efficacy of PTT was found to be dependent on the internalization efficiency of LiposAu nanoparticles in cancer cells. Importantly, QE-LiposAu nanoparticles showed increased PTT efficacy over LiposAu nanoparticles in hepatocellular carcinoma cells (Huh-7). Moreover, QE-LiposAu nanoparticles induced apoptosis-mediated cell death after the PTT, and the extent of apoptosis was significantly higher than the LiposAu nanoparticles in Huh-7 cells. Further, QE-LiposAu nanoparticles-mediated PTT depolymerized microtubules network, suppressed Hsp70 expression, and caused DNA damage. QE-LiposAu nanoparticles were also found to be hemocompatible. The results together suggested that biodegradable QE-LiposAu nanoparticles are promising photothermal agents for cancer therapy.

12.
Sci Rep ; 9(1): 915, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696860

RESUMO

Bioactive nanosilicates are emerging prominent next generation biomaterials due to their intrinsic functional properties such as advanced biochemical and biophysical cues. Recent studies show interesting dose-dependent effect of fluoride ions on the stem cells. Despite of interesting properties of fluoride ions as well as nanosilicate, there is no reported literature on the effect of fluoride-doped nanosilicates on stem cells. We have systematically evaluated the interaction of fluoride nanosilicate platelets (NS + F) with human dental follicle stem cells (hDFSCs) to probe the cytotoxicity, cellular transport (internalization) and osteogenic differentiation capabilities in comparison with already reported nanosilicate platelets without fluoride (NS - F). To understand the osteoinductive and osteoconductive properties of the nanosilicate system, nanosilicate treated hDFSCs are cultured in three different medium namely normal growth medium, osteoconductive medium, and osteoinductive medium up to 21 d. NS + F treated stem cells show higher ALP activity, osteopontin levels and significant alizarin red staining compared to NS - F treated cells. This study highlights that the particles having fluoride additives (NS + F) aid in enhancing the osteogenic differentiation capabilities of hDFSCs thus potential nanobiomaterial for periodontal bone tissue regeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Saco Dentário/citologia , Fluoretos/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fosfatase Alcalina/biossíntese , Materiais Biocompatíveis/química , Biomarcadores , Proliferação de Células , Células Cultivadas , Imunofluorescência , Fluoretos/química , Humanos , Imuno-Histoquímica , Nanopartículas/química , Nanopartículas/ultraestrutura , Osteopontina/genética , Osteopontina/metabolismo , Silicatos/química , Análise Espectral , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA