Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Cell ; 151(1): 167-80, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23021223

RESUMO

DNA methylation and histone modification exert epigenetic control over gene expression. CHG methylation by CHROMOMETHYLASE3 (CMT3) depends on histone H3K9 dimethylation (H3K9me2), but the mechanism underlying this relationship is poorly understood. Here, we report multiple lines of evidence that CMT3 interacts with H3K9me2-containing nucleosomes. CMT3 genome locations nearly perfectly correlated with H3K9me2, and CMT3 stably associated with H3K9me2-containing nucleosomes. Crystal structures of maize CMT3 homolog ZMET2, in complex with H3K9me2 peptides, showed that ZMET2 binds H3K9me2 via both bromo adjacent homology (BAH) and chromo domains. The structures reveal an aromatic cage within both BAH and chromo domains as interaction interfaces that capture H3K9me2. Mutations that abolish either interaction disrupt CMT3 binding to nucleosomes and show a complete loss of CMT3 activity in vivo. Our study establishes dual recognition of H3K9me2 marks by BAH and chromo domains and reveals a distinct mechanism of interplay between DNA methylation and histone modification.


Assuntos
Arabidopsis/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA de Plantas/metabolismo , Nucleossomos/metabolismo , Zea mays/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferases/química , Heterocromatina/metabolismo , Histonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Zea mays/genética
2.
Genome Res ; 31(2): 291-300, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33468551

RESUMO

The predominant methodology for DNA methylation analysis relies on the chemical deamination by sodium bisulfite of unmodified cytosine to uracil to permit the differential readout of methylated cytosines. Bisulfite treatment damages the DNA, leading to fragmentation and loss of long-range methylation information. To overcome this limitation of bisulfite-treated DNA, we applied a new enzymatic deamination approach, termed enzymatic methyl-seq (EM-seq), to long-range sequencing technologies. Our methodology, named long-read enzymatic modification sequencing (LR-EM-seq), preserves the integrity of DNA, allowing long-range methylation profiling of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) over multikilobase length of genomic DNA. When applied to known differentially methylated regions (DMRs), LR-EM-seq achieves phasing of >5 kb, resulting in broader and better defined DMRs compared with that previously reported. This result showed the importance of phasing methylation for biologically relevant questions and the applicability of LR-EM-seq for long-range epigenetic analysis at single-molecule and single-nucleotide resolution.

3.
Genome Res ; 31(7): 1280-1289, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34140313

RESUMO

Bisulfite sequencing detects 5mC and 5hmC at single-base resolution. However, bisulfite treatment damages DNA, which results in fragmentation, DNA loss, and biased sequencing data. To overcome these problems, enzymatic methyl-seq (EM-seq) was developed. This method detects 5mC and 5hmC using two sets of enzymatic reactions. In the first reaction, TET2 and T4-BGT convert 5mC and 5hmC into products that cannot be deaminated by APOBEC3A. In the second reaction, APOBEC3A deaminates unmodified cytosines by converting them to uracils. Therefore, these three enzymes enable the identification of 5mC and 5hmC. EM-seq libraries were compared with bisulfite-converted DNA, and each library type was ligated to Illumina adaptors before conversion. Libraries were made using NA12878 genomic DNA, cell-free DNA, and FFPE DNA over a range of DNA inputs. The 5mC and 5hmC detected in EM-seq libraries were similar to those of bisulfite libraries. However, libraries made using EM-seq outperformed bisulfite-converted libraries in all specific measures examined (coverage, duplication, sensitivity, etc.). EM-seq libraries displayed even GC distribution, better correlations across DNA inputs, increased numbers of CpGs within genomic features, and accuracy of cytosine methylation calls. EM-seq was effective using as little as 100 pg of DNA, and these libraries maintained the described advantages over bisulfite sequencing. EM-seq library construction, using challenging samples and lower DNA inputs, opens new avenues for research and clinical applications.

4.
Nature ; 555(7696): 392-396, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29513657

RESUMO

Gametes are highly specialized cells that can give rise to the next generation through their ability to generate a totipotent zygote. In mice, germ cells are first specified in the developing embryo around embryonic day (E) 6.25 as primordial germ cells (PGCs). Following subsequent migration into the developing gonad, PGCs undergo a wave of extensive epigenetic reprogramming around E10.5-E11.5, including genome-wide loss of 5-methylcytosine. The underlying molecular mechanisms of this process have remained unclear, leading to our inability to recapitulate this step of germline development in vitro. Here we show, using an integrative approach, that this complex reprogramming process involves coordinated interplay among promoter sequence characteristics, DNA (de)methylation, the polycomb (PRC1) complex and both DNA demethylation-dependent and -independent functions of TET1 to enable the activation of a critical set of germline reprogramming-responsive genes involved in gamete generation and meiosis. Our results also reveal an unexpected role for TET1 in maintaining but not driving DNA demethylation in gonadal PGCs. Collectively, our work uncovers a fundamental biological role for gonadal germline reprogramming and identifies the epigenetic principles of the PGC-to-gonocyte transition that will help to guide attempts to recapitulate complete gametogenesis in vitro.


Assuntos
Reprogramação Celular/genética , Epigênese Genética , Gametogênese/genética , Células Germinativas/citologia , Células Germinativas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Masculino , Meiose , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
5.
Amino Acids ; 54(4): 529-542, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35357568

RESUMO

Polyglutamylation is a posttranslational modification (PTM) that adds several glutamates on glutamate residues in the form of conjugated peptide chains by a family of enzymes known as polyglutamylases. Polyglutamylation is well documented in microtubules. Polyglutamylated microtubules consist of different α- and ß-tubulin subunits with varied number of added glutamate residues. Kinetic control and catalytic rates of tubulin modification by polyglutamylases influence the polyglutamylation pattern of functional microtubules. The recent studies uncovered catalytic mechanisms of the glutamylation enzymes family, particularly tubulin tyrosine ligase-like (TTLL). Variable length polyglutamylation of primary sequence glutamyl residues have been mapped with a multitude of protein chemistry and proteomics approaches. Although polyglutamylation was initially considered a tubulin-specific modification, the recent studies have uncovered a calmodulin-dependent glutamylase, SidJ. Nano-electrospray ionization (ESI) proteomic approaches have identified quantifiable polyglutamylated sites in specific substrates. Indeed, conjugated glutamylated peptides were used in nano-liquid chromatography gradient delivery due to their relative hydrophobicity for their tandem mass spectrometry (MS/MS) characterization. The recent polyglutamylation characterization has revealed three major sites: E445 in α-tubulin, E435 in ß-tubulin, and E860 in SdeA. In this review, we have summarized the progress made using proteomic approaches for large-scale detection of polyglutamylated peptides, including biology and analysis.


Assuntos
Espectrometria de Massas em Tandem , Tubulina (Proteína) , Ácido Glutâmico/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica , Tubulina (Proteína)/química
6.
Nucleic Acids Res ; 48(3): e16, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31819993

RESUMO

In metazoan cell nuclei, heterochromatin constitutes large chromatin domains that are in close contact with the nuclear lamina. These heterochromatin/lamina-associated domains (LADs) domains are difficult to profile and warrants a simpler and direct method. Here we report a new method, Protect-seq, aimed at identifying regions of heterochromatin via resistance to nuclease degradation followed by next-generation sequencing (NGS). We performed Protect-seq on the human colon cancer cell line HCT-116 and observed overlap with previously curated LADs. We provide evidence that these protected regions are enriched for and can distinguish between the repressive histone modification H3K9me3, H3K9me2 and H3K27me3. Moreover, in human cells the loss of H3K9me3 leads to an increase in chromatin accessibility and loss of Protect-seq signal. For further validation, we performed Protect-seq in the fibrosarcoma cell line HT1080 and found a similar correlation with previously curated LADs and repressive histone modifications. In sum, Protect-seq is an efficient technique that allows rapid identification of nuclease resistant chromatin, which correlate with heterochromatin and radial positioning.


Assuntos
Heterocromatina/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Linhagem Celular Tumoral , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Desoxirribonucleases , Código das Histonas , Humanos
7.
J Biol Chem ; 295(14): 4748-4759, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32111740

RESUMO

Microtubules are cytoskeletal structures critical for mitosis, cell motility, and protein and organelle transport and are a validated target for anticancer drugs. However, how tubulins are regulated and recruited to support these distinct cellular processes is incompletely understood. Posttranslational modifications of tubulins are proposed to regulate microtubule function and dynamics. Although many of these modifications have been investigated, only one prior study reports tubulin methylation and an enzyme responsible for this methylation. Here we used in vitro radiolabeling, MS, and immunoblotting approaches to monitor protein methylation and immunoprecipitation, immunofluorescence, and pulldown approaches to measure protein-protein interactions. We demonstrate that N-lysine methyltransferase 5A (KMT5A or SET8/PR-Set7), which methylates lysine 20 in histone H4, bound α-tubulin and methylated it at a specific lysine residue, Lys311 Furthermore, late SV40 factor (LSF)/CP2, a known transcription factor, bound both α-tubulin and SET8 and enhanced SET8-mediated α-tubulin methylation in vitro In addition, we found that the ability of LSF to facilitate this methylation is countered by factor quinolinone inhibitor 1 (FQI1), a specific small-molecule inhibitor of LSF. These findings suggest the general model that microtubule-associated proteins, including transcription factors, recruit or stimulate protein-modifying enzymes to target tubulins. Moreover, our results point to dual functions for SET8 and LSF not only in chromatin regulation but also in cytoskeletal modification.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Células HEK293 , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Metilação , Ligação Proteica , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética
8.
Anal Biochem ; 612: 113761, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502490

RESUMO

Tubulin polyglutamylation is a polymeric modification that extends from the carboxyl-terminus of tubulins. Molecular description of amino acids and their branching polyglutamyls is a hallmark of tubulin in microtubules. There are different chemical approaches for detecting these polymeric structures, mostly reported prior to development of nESI peptide analysis. Here we demonstrate a novel and simple approach to detect shared regions of amino acid ions from tubulin polyglutamylated peptides in nanoLC-MS/MS. This involves two parallel in gel digestions with trypsin and subtilisin followed by mapping of di- and triglutamyl modifications of α- and ß-tubulins using a routine proteomics assay. We present three levels of information: i) identification of proteomics MS/MS data, ii) description of internal fragment ion series common across digests, and iii) extracted ion chromatograms mapped relative to retention time standards for confirmation of relative hydrophobicity values. Our nanoLC assay positive ion ESI detects up to 3 conjugated glutamates in tubulins. We implemented an analytical column only bottom up approach that characterizes molecular features of polyglutamylated tubulins.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Nanotecnologia/métodos , Ácido Poliglutâmico/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Tubulina (Proteína)/química , Sequência de Aminoácidos , Animais , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ácido Poliglutâmico/metabolismo , Processamento de Proteína Pós-Traducional , Proteólise , Suínos , Tubulina (Proteína)/metabolismo
9.
Nature ; 503(7476): 371-6, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24107992

RESUMO

DNA methylation was first described almost a century ago; however, the rules governing its establishment and maintenance remain elusive. Here we present data demonstrating that active transcription regulates levels of genomic methylation. We identify a novel RNA arising from the CEBPA gene locus that is critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extend the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene-selective demethylation of therapeutic targets in human diseases.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Regulação da Expressão Gênica/genética , RNA não Traduzido/metabolismo , Sequência de Bases , Linhagem Celular , DNA/genética , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , Perfilação da Expressão Gênica , Genoma Humano/genética , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Transcrição Gênica/genética
10.
Nucleic Acids Res ; 45(16): 9398-9412, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934503

RESUMO

In mammals, faithful inheritance of genomic methylation patterns ensures proper gene regulation and cell behaviour, impacting normal development and fertility. Following establishment, genomic methylation patterns are transmitted through S-phase by the maintenance methyltransferase Dnmt1. Using a protein interaction screen, we identify Microprocessor component DROSHA as a novel DNMT1-interactor. Drosha-deficient embryonic stem (ES) cells display genomic hypomethylation that is not accounted for by changes in the levels of DNMT proteins. DNMT1-mediated methyltransferase activity is also reduced in these cells. We identify two transcripts that are specifically upregulated in Drosha- but not Dicer-deficient ES cells. Regions within these transcripts predicted to form stem-loop structures are processed by Microprocessor and can inhibit DNMT1-mediated methylation in vitro. Our results highlight DROSHA as a novel regulator of mammalian DNA methylation and we propose that DROSHA-mediated processing of RNA is necessary to ensure full DNMT1 activity. This adds to the DROSHA repertoire of non-miRNA dependent functions as well as implicating RNA in regulating DNMT1 activity and correct levels of genomic methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Ribonuclease III/fisiologia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , Células-Tronco Embrionárias/enzimologia , Células HEK293 , Humanos , Camundongos , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Regulação para Cima
11.
Nucleic Acids Res ; 44(4): 1642-56, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26553800

RESUMO

Mammalian DNA (cytosine-5) methyltransferase 1 (DNMT1) is essential for maintenance methylation. Phosphorylation of Ser143 (pSer143) stabilizes DNMT1 during DNA replication. Here, we show 14-3-3 is a reader protein of DNMT1pSer143. In mammalian cells 14-3-3 colocalizes and binds DNMT1pSer143 post-DNA replication. The level of DNMT1pSer143 increased with overexpression of 14-3-3 and decreased by its depletion. Binding of 14-3-3 proteins with DNMT1pSer143 resulted in inhibition of DNA methylation activity in vitro. In addition, overexpression of 14-3-3 in NIH3T3 cells led to decrease in DNMT1 specific activity resulting in hypomethylation of the genome that was rescued by transfection of DNMT1. Genes representing cell migration, mobility, proliferation and focal adhesion pathway were hypomethylated and overexpressed. Furthermore, overexpression of 14-3-3 also resulted in enhanced cell invasion. Analysis of TCGA breast cancer patient data showed significant correlation for DNA hypomethylation and reduced patient survival with increased 14-3-3 expressions. Therefore, we suggest that 14-3-3 is a crucial reader of DNMT1pSer143 that regulates DNA methylation and altered gene expression that contributes to cell invasion.


Assuntos
Proteínas 14-3-3/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Regulação da Expressão Gênica , Proteínas 14-3-3/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/biossíntese , DNA (Citosina-5-)-Metiltransferases/metabolismo , Replicação do DNA/genética , Camundongos , Células NIH 3T3 , Fosforilação
12.
Hum Mol Genet ; 24(16): 4660-73, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26041816

RESUMO

Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes.


Assuntos
Epigênese Genética/fisiologia , Mioblastos Esqueléticos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Fosfatidilinositol 3-Quinases/biossíntese , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/biossíntese , Animais , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases , Humanos , Camundongos , Mioblastos Esqueléticos/citologia , Fatores de Regulação Miogênica/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética
13.
Anal Biochem ; 533: 1-9, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28624296

RESUMO

DNA methylation is a highly conserved epigenetic modification with critical roles ranging from protection against phage infection in bacteria to the regulation of gene expression in mammals. DNA methylation at specific sequences can be measured by using methylation dependent or sensitive restriction enzymes coupled to semi- or quantitative PCR (MD-qPCR). This study reports a refined MD-qPCR method for detecting gain or loss of DNA methylation at specific sites through the specific use of MspJI or HpaII, respectively. By employing varying concentrations of DNA with methylation ranging from 0 to 100%, our data provide evidence that compared to HpaII, MspJI increases the sensitivity and accuracy of detecting relative DNA methylation gains by MD-qPCR. We also show that the MspJI-coupled MD-qPCR can accurately determine the percent gain in DNA methylation at the Sall4 enhancer and is more sensitive than HpaII in detecting relative gains in DNA methylation at the Oct4 proximal enhancer during embryonic stem cell (ESC) differentiation. The high specificity and sensitivity of this targeted approach increases its potential as a diagnostic tool to detect relatively smaller gains in DNA methylation at specific sites from limited amounts of sample.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Enzimas de Restrição do DNA/genética , Epigênese Genética , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Humanos , Fator 3 de Transcrição de Octâmero/genética , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética
14.
Nucleic Acids Res ; 43(12): 6112-24, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-25990724

RESUMO

Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA , MicroRNAs/metabolismo , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Células HEK293 , Humanos
15.
Mol Cell ; 31(3): 347-59, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18691967

RESUMO

Mediator occupies a central role in RNA polymerase II transcription as a sensor, integrator, and processor of regulatory signals that converge on protein-coding gene promoters. Compared to its role in gene activation, little is known regarding the molecular mechanisms and biological implications of Mediator as a transducer of repressive signals. Here we describe a protein interaction network required for extraneuronal gene silencing comprising Mediator, G9a histone methyltransferase, and the RE1 silencing transcription factor (REST; also known as neuron restrictive silencer factor, NRSF). We show that the MED12 interface in Mediator links REST with G9a-dependent histone H3K9 dimethylation to suppress neuronal genes in nonneuronal cells. Notably, missense mutations in MED12 causing the X-linked mental retardation (XLMR) disorders FG syndrome and Lujan syndrome disrupt its REST corepressor function. These findings implicate Mediator in epigenetic restriction of neuronal gene expression to the nervous system and suggest a pathologic basis for MED12-associated XLMR involving impaired REST-dependent neuronal gene regulation.


Assuntos
Inativação Gênica , Deficiência Intelectual Ligada ao Cromossomo X/genética , Neurônios/metabolismo , Neurônios/patologia , Receptores dos Hormônios Tireóideos/metabolismo , Células HeLa , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Complexo Mediador , Mutação de Sentido Incorreto/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Elementos Silenciadores Transcricionais/genética
16.
J Biol Chem ; 289(12): 8277-87, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24492612

RESUMO

Inheritance of DNA cytosine methylation pattern during successive cell division is mediated by maintenance DNA (cytosine-5) methyltransferase 1 (DNMT1). Lysine 142 of DNMT1 is methylated by the SET domain containing lysine methyltransferase 7 (SET7), leading to its degradation by proteasome. Here we show that PHD finger protein 20-like 1 (PHF20L1) regulates DNMT1 turnover in mammalian cells. Malignant brain tumor (MBT) domain of PHF20L1 binds to monomethylated lysine 142 on DNMT1 (DNMT1K142me1) and colocalizes at the perinucleolar space in a SET7-dependent manner. PHF20L1 knockdown by siRNA resulted in decreased amounts of DNMT1 on chromatin. Ubiquitination of DNMT1K142me1 was abolished by overexpression of PHF20L1, suggesting that its binding may block proteasomal degradation of DNMT1K142me1. Conversely, siRNA-mediated knockdown of PHF20L1 or incubation of a small molecule MBT domain binding inhibitor in cultured cells accelerated the proteasomal degradation of DNMT1. These results demonstrate that the MBT domain of PHF20L1 reads and controls enzyme levels of methylated DNMT1 in cells, thus representing a novel antagonist of DNMT1 degradation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Lisina/análogos & derivados , Linhagem Celular , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Humanos , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Proteólise , Interferência de RNA , Regulação para Cima
17.
Proc Natl Acad Sci U S A ; 109(12): 4503-8, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22396589

RESUMO

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Despite the prevalence of HCC, there is no effective, systemic treatment. The transcription factor LSF is a promising protein target for chemotherapy; it is highly expressed in HCC patient samples and cell lines, and promotes oncogenesis in rodent xenograft models of HCC. Here, we identify small molecules that effectively inhibit LSF cellular activity. The lead compound, factor quinolinone inhibitor 1 (FQI1), inhibits LSF DNA-binding activity both in vitro, as determined by electrophoretic mobility shift assays, and in cells, as determined by ChIP. Consistent with such inhibition, FQI1 eliminates transcriptional stimulation of LSF-dependent reporter constructs. FQI1 also exhibits antiproliferative activity in multiple cell lines. In LSF-overexpressing cells, including HCC cells, cell death is rapidly induced; however, primary or immortalized hepatocytes are unaffected by treatment with FQI1. The highly concordant structure-activity relationship of a panel of 23 quinolinones strongly suggests that the growth inhibitory activity is due to a single biological target or family. Coupled with the striking agreement between the concentrations required for antiproliferative activity (GI(50)s) and for inhibition of LSF transactivation (IC(50)s), we conclude that LSF is the specific biological target of FQIs. Based on these in vitro results, we tested the efficacy of FQI1 in inhibiting HCC tumor growth in a mouse xenograft model. As a single agent, tumor growth was dramatically inhibited with no observable general tissue cytotoxicity. These findings support the further development of LSF inhibitors for cancer chemotherapy.


Assuntos
Benzodioxóis/farmacologia , Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Quinolonas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Genes Reporter , Hepatócitos/citologia , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Químicos , Células NIH 3T3 , Transplante de Neoplasias , Oncogenes , Relação Estrutura-Atividade , Ativação Transcricional
18.
J Biol Chem ; 288(27): 19673-84, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23671287

RESUMO

A novel scintillation proximity high throughput assay (SPA) to identify inhibitors of DNA methyltransferases was developed and used to screen over 180,000 compounds. The majority of the validated hits shared a quinone core and several were found to generate the reactive oxygen species, H2O2. Inhibition of the production of H2O2 by the addition of catalase blocked the ability of this group of compounds to inhibit DNA methyltransferase (DNMT) activity. However, a related compound, SW155246, was identified that existed in an already reduced form of the quinone. This compound did not generate H2O2, and catalase did not block its ability to inhibit DNA methyltransferase. SW155246 showed a 30-fold preference for inhibition of human DNMT1 versus human or murine DNMT3A or -3B, inhibited global methylation in HeLa cells, and reactivated expression of the tumor suppressor gene RASSF1A in A549 cells. To our knowledge, this work represents the first description of selective chemical inhibitors of the DNMT1 enzyme.


Assuntos
Bioensaio , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Inibidores Enzimáticos/química , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Oxidantes/farmacologia , Células Sf9 , Spodoptera , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , DNA Metiltransferase 3B
19.
IUBMB Life ; 66(4): 240-56, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24706538

RESUMO

The mammalian genome is packaged into chromatin that is further compacted into three-dimensional structures consisting of distinct functional domains. The higher order structure of chromatin is in part dictated by enzymatic DNA methylation and histone modifications to establish epigenetic layers controlling gene expression and cellular functions, without altering the underlying DNA sequences. Apart from DNA and histone modifications, non-coding RNAs can also regulate the dynamics of the mammalian gene expression and various physiological functions including cell division, differentiation, and apoptosis. Aberrant epigenetic signatures are associated with abnormal developmental processes and diseases such as cancer. In this review, we will discuss the different layers of epigenetic regulation, including writer enzymes for DNA methylation, histone modifications, non-coding RNA, and chromatin conformation. We will highlight the combinatorial role of these structural and chemical modifications along with their partners in various cellular processes in mammalian cells. We will also address the cis and trans interacting "reader" proteins that recognize these modifications and "eraser" enzymes that remove these marks. Furthermore, an attempt will be made to discuss the interplay between various epigenetic writers, readers, and erasures in the establishment of mammalian epigenetic mechanisms.


Assuntos
Epigênese Genética/genética , Regulação da Expressão Gênica , Mamíferos/genética , Modelos Biológicos , Animais , Metilação de DNA
20.
Nature ; 452(7184): 215-9, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18278030

RESUMO

Cytosine DNA methylation is important in regulating gene expression and in silencing transposons and other repetitive sequences. Recent genomic studies in Arabidopsis thaliana have revealed that many endogenous genes are methylated either within their promoters or within their transcribed regions, and that gene methylation is highly correlated with transcription levels. However, plants have different types of methylation controlled by different genetic pathways, and detailed information on the methylation status of each cytosine in any given genome is lacking. To this end, we generated a map at single-base-pair resolution of methylated cytosines for Arabidopsis, by combining bisulphite treatment of genomic DNA with ultra-high-throughput sequencing using the Illumina 1G Genome Analyser and Solexa sequencing technology. This approach, termed BS-Seq, unlike previous microarray-based methods, allows one to sensitively measure cytosine methylation on a genome-wide scale within specific sequence contexts. Here we describe methylation on previously inaccessible components of the genome and analyse the DNA methylation sequence composition and distribution. We also describe the effect of various DNA methylation mutants on genome-wide methylation patterns, and demonstrate that our newly developed library construction and computational methods can be applied to large genomes such as that of mouse.


Assuntos
Arabidopsis/genética , Metilação de DNA , Genoma de Planta/genética , Análise de Sequência de DNA/métodos , Sulfitos/metabolismo , 5-Metilcitosina/metabolismo , Animais , Sequência de Bases , Biologia Computacional , Citosina/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Biblioteca Gênica , Camundongos , Mutação/genética , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Uracila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA