Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Virol ; 97(4): e0006523, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017532

RESUMO

The establishment of the Orsay virus-Caenorhabditis elegans infection model has enabled the identification of host factors essential for virus infection. Argonautes are RNA interacting proteins evolutionary conserved in the three domains of life that are key components of small RNA pathways. C. elegans encodes 27 argonautes or argonaute-like proteins. Here, we determined that mutation of the argonaute-like gene 1, alg-1, results in a greater than 10,000-fold reduction in Orsay viral RNA levels, which could be rescued by ectopic expression of alg-1. Mutation in ain-1, a known interactor of ALG-1 and component of the RNA-induced silencing complex, also resulted in a significant reduction in Orsay virus levels. Viral RNA replication from an endogenous transgene replicon system was impaired by the lack of ALG-1, suggesting that ALG-1 plays a role during the replication stage of the virus life cycle. Orsay virus RNA levels were unaffected by mutations in the ALG-1 RNase H-like motif that ablate the slicer activity of ALG-1. These findings demonstrate a novel function of ALG-1 in promoting Orsay virus replication in C. elegans. IMPORTANCE All viruses are obligate intracellular parasites that recruit the cellular machinery of the host they infect to support their own proliferation. We used Caenorhabditis elegans and its only known infecting virus, Orsay virus, to identify host proteins relevant for virus infection. We determined that ALG-1, a protein previously known to be important in influencing worm life span and the expression levels of thousands of genes, is required for Orsay virus infection of C. elegans. This is a new function attributed to ALG-1 that was not recognized before. In humans, it has been shown that AGO2, a close relative protein to ALG-1, is essential for hepatitis C virus replication. This demonstrates that through evolution from worms to humans, some proteins have maintained similar functions, and consequently, this suggests that studying virus infection in a simple worm model has the potential to provide novel insights into strategies used by viruses to proliferate.


Assuntos
Proteínas de Caenorhabditis elegans , Nodaviridae , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Nodaviridae/genética , Nodaviridae/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral/genética , Infecções por Vírus de RNA/virologia , Mutação
2.
Adv Exp Med Biol ; 1455: 117-140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38918349

RESUMO

The measurement of time in the subsecond scale is critical for many sophisticated behaviors, yet its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the neural activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing. During single interval categorization, we found that preSMA encodes a subjective category limit by reaching a peak of activity at a time that divides the set of test intervals into short and long. We also observed neural signals associated with the category selected by the subjects and the reward outcomes of the perceptual decision. On the other hand, we have studied the behavioral and neurophysiological basis of rhythmic timing. First, we have shown in different tapping tasks that macaques are able to produce predictively and accurately intervals that are cued by auditory or visual metronomes or when intervals are produced internally without sensory guidance. In addition, we found that the rhythmic timing mechanism in MPC is governed by different layers of neural clocks. Next, the instantaneous activity of single cells shows ramping activity that encodes the elapsed or remaining time for a tapping movement. In addition, we found MPC neurons that build neural sequences, forming dynamic patterns of activation that flexibly cover all the produced interval depending on the tapping tempo. This rhythmic neural clock resets on every interval providing an internal representation of pulse. Furthermore, the MPC cells show mixed selectivity, encoding not only elapsed time, but also the tempo of the tapping and the serial order element in the rhythmic sequence. Hence, MPC can map different task parameters, including the passage of time, using different cell populations. Finally, the projection of the time varying activity of MPC hundreds of cells into a low dimensional state space showed circular neural trajectories whose geometry represented the internal pulse and the tapping tempo. Overall, these findings support the notion that MPC is part of the core timing mechanism for both single interval and rhythmic timing, using neural clocks with different encoding principles, probably to flexibly encode and mix the timing representation with other task parameters.


Assuntos
Córtex Motor , Percepção do Tempo , Animais , Percepção do Tempo/fisiologia , Córtex Motor/fisiologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia
3.
Nurs Crit Care ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654607

RESUMO

Anaemia is a common issue in patients who are admitted to intensive care units and worsens their condition throughout the stay due to the extraction of blood for diagnostic purposes. It is also well-known that an important amount of the carbon dioxide produced by health services is likely attributable to blood donation, testing and manufacture, storage or distribution of blood components. This must be taken into account to perform nursing interventions consistent with the idea of sustainable health care. In this regard, within patient blood management bundles, with the objective of minimizing the use of blood products, it is recommended to use blood-sparing techniques: small volume tubes (SVT) or closed-blood sampling devices (CBSD). Published studies before 2014 (excepting two more recent ones) have shown that by themselves, both techniques reduce drawn volume but do not decrease haemoglobin reduction and/or need of transfusion. Given the lack of cost-effectiveness studies, it may be easier to implement the use of CBSD as it does not require prior consensus on the discard volume or adaptations in the processing of laboratory tests, as is the case with SVT.

4.
Proc Natl Acad Sci U S A ; 117(36): 22462-22472, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839311

RESUMO

Huntingtin-interacting protein family members are evolutionarily conserved from yeast to humans, and they are known to be key factors in clathrin-mediated endocytosis. Here we identified the Caenorhabditis elegans protein huntingtin-interacting protein-related 1 (HIPR-1) as a host factor essential for Orsay virus infection of C. elegans Ablation of HIPR-1 resulted in a greater than 10,000-fold reduction in viral RNA, which could be rescued by ectopic expression of HIPR-1. Viral RNA replication from an endogenous transgene replicon system was not affected by lack of HIPR-1, suggesting that HIPR-1 plays a role during an early, prereplication virus life-cycle stage. Ectopic expression of HIPR-1 mutants demonstrated that neither the clathrin light chain-binding domain nor the clathrin heavy chain-binding motif were needed for virus infection, whereas the inositol phospholipid-binding and F-actin-binding domains were essential. In human cell culture, deletion of the human HIP orthologs HIP1 and HIP1R led to decreased infection by Coxsackie B3 virus. Finally, ectopic expression of a chimeric HIPR-1 harboring the human HIP1 ANTH (AP180 N-terminal homology) domain rescued Orsay infection in C. elegans, demonstrating conservation of its function through evolution. Collectively, these findings further our knowledge of cellular factors impacting viral infection in C. elegans and humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interações Hospedeiro-Patógeno , Proteínas dos Microfilamentos/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/virologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Sequência Conservada/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Masculino , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Nodaviridae/patogenicidade , Nodaviridae/fisiologia , Domínios Proteicos/genética , Replicação Viral
5.
J Med Virol ; 94(4): 1540-1549, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845754

RESUMO

Coronavirus disease 2019 (COVID-19) infection in elderly patients is more aggressive and treatments have shown limited efficacy. Our objective is to describe the clinical course and to analyze the prognostic factors associated with a higher risk of mortality of a cohort of patients older than 80 years. In addition, we assess the efficacy of immunosuppressive treatments in this population. We analyzed the data from 163 patients older than 80 years admitted to our institution for COVID-19, during March and April 2020. A Lasso regression model and subsequent multivariate Cox regression were performed to select variables predictive of death. We evaluated the efficacy of immunomodulatory therapy in three cohorts using adjusted survival analysis. The mortality rate was 43%. The mean age was 85.2 years. The disease was considered severe in 76.1% of the cases. Lasso regression and multivariate Cox regression indicated that factors correlated with hospital mortality were: age (hazard ratio [HR] 1.12, 95% confidence interval [CI]: 1.03-1.22), alcohol consumption (HR 3.15, 95% CI: 1.27-7.84), CRP > 10 mg/dL (HR 2.67, 95% CI: 1.36-5.24), and oxygen support with Venturi Mask (HR 6.37, 95% CI: 2.18-18.62) or reservoir (HR 7.87, 95% CI: 3.37-18.38). Previous treatment with antiplatelets was the only protective factor (HR 0.47, 95% CI: 0.23-0.96). In the adjusted treatment efficacy analysis, we found benefit in the combined use of tocilizumab (TCZ) and corticosteroids (CS) (HR 0.09, 95% CI: 0.01-0.74) compared to standard treatment, with no benefit of CS alone (HR 0.95, 95% CI: 0.53-1.71). Hospitalized elderly patients suffer from a severe and often fatal form of COVID-19 disease. In this regard, several parameters might identify high-risk patients upon admission. Combined use of TCZ and CS could improve survival.


Assuntos
Corticosteroides/administração & dosagem , Anticorpos Monoclonais Humanizados/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/mortalidade , Idoso de 80 Anos ou mais , COVID-19/virologia , Comorbidade , Quimioterapia Combinada , Feminino , Mortalidade Hospitalar , Hospitalização , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Espanha/epidemiologia , Análise de Sobrevida
6.
PLoS Biol ; 17(4): e3000054, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958818

RESUMO

Our motor commands can be exquisitely timed according to the demands of the environment, and the ability to generate rhythms of different tempos is a hallmark of musical cognition. Yet, the neuronal underpinnings behind rhythmic tapping remain elusive. Here, we found that the activity of hundreds of primate medial premotor cortices (MPCs; pre-supplementary motor area [preSMA] and supplementary motor area [SMA]) neurons show a strong periodic pattern that becomes evident when their responses are projected into a state space using dimensionality reduction analysis. We show that different tapping tempos are encoded by circular trajectories that travelled at a constant speed but with different radii, and that this neuronal code is highly resilient to the number of participating neurons. Crucially, the changes in the amplitude of the oscillatory dynamics in neuronal state space are a signature of duration encoding during rhythmic timing, regardless of whether it is guided by an external metronome or is internally controlled and is not the result of repetitive motor commands. This dynamic state signal predicted the duration of the rhythmically produced intervals on a trial-by-trial basis. Furthermore, the increase in variability of the neural trajectories accounted for the scalar property, a hallmark feature of temporal processing across tasks and species. Finally, we found that the interval-dependent increments in the radius of periodic neural trajectories are the result of a larger number of neurons engaged in the production of longer intervals. Our results support the notion that rhythmic timing during tapping behaviors is encoded in the radial curvature of periodic MPC neural population trajectories.


Assuntos
Córtex Motor/fisiologia , Neurônios/fisiologia , Periodicidade , Animais , Macaca mulatta , Masculino , Atividade Motora/fisiologia , Música , Análise de Componente Principal , Análise Espaço-Temporal , Percepção do Tempo/fisiologia
7.
J Neurophysiol ; 121(3): 940-949, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30575431

RESUMO

Dopamine, and specifically the D2 system, has been implicated in timing tasks where the absolute duration of individual time intervals is encoded discretely, yet the role of D2 during beat perception and entrainment remains largely unknown. In this type of timing, a beat is perceived as the pulse that marks equally spaced points in time and, once extracted, produces the tendency in humans to entrain or synchronize their movements to it. Hence, beat-based timing is crucial for musical execution. In this study we investigated the effects of systemic injections of quinpirole (0.005-0.05 mg/kg), a D2-like agonist, on the isochronous rhythmic tapping of rhesus monkeys, a classical task for the study of beat entrainment. We compared the rhythmic timing accuracy, precision, and the asynchronies of the monkeys with or without the effects of quinpirole, as well as their reaction times in a control serial reaction time task (SRTT). The results showed a dose-dependent disruption in the scalar property of rhythmic timing due to quinpirole administration. Specifically, we found similar temporal variabilities as a function of the metronome tempo at the largest dose, instead of the increase in variability across durations that is characteristic of the timing Weber law. Notably, these effects were not due to alterations in the basic sensorimotor mechanism for tapping to a sequence of flashing stimuli, because quinpirole did not change the reaction time of the monkeys during SRTT. These findings support the notion of a key role of the D2 system in the rhythmic timing mechanism, especially in the control of temporal precision. NEW & NOTEWORTHY Perceiving and moving to the beat of music is a fundamental trait of musical cognition. We measured the effect of quinpirole, a D2-like agonist, on the precision and accuracy of rhythmic tapping to a metronome in two rhesus monkeys. Quinpirole produced a flattening of the temporal variability as a function of tempo duration, instead of the increase in variability across durations that is characteristic of the scalar property, a hallmark property of timing.


Assuntos
Percepção Auditiva , Agonistas de Dopamina/farmacologia , Música , Quimpirol/farmacologia , Animais , Feminino , Macaca mulatta , Masculino , Periodicidade , Desempenho Psicomotor , Córtex Sensório-Motor/efeitos dos fármacos , Córtex Sensório-Motor/fisiologia
8.
J Synchrotron Radiat ; 25(Pt 4): 1144-1152, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979176

RESUMO

The development of magnetic nanostructures for applications in spintronics requires methods capable of visualizing their magnetization. Soft X-ray magnetic imaging combined with circular magnetic dichroism allows nanostructures up to 100-300 nm in thickness to be probed with resolutions of 20-40 nm. Here a new iterative tomographic reconstruction method to extract the three-dimensional magnetization configuration from tomographic projections is presented. The vector field is reconstructed by using a modified algebraic reconstruction approach based on solving a set of linear equations in an iterative manner. The application of this method is illustrated with two examples (magnetic nano-disc and micro-square heterostructure) along with comparison of error in reconstructions, and convergence of the algorithm.

9.
J Neurosci ; 36(50): 12511-12529, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27974611

RESUMO

Although the release of mesoaccumbal dopamine is certainly involved in rewarding responses, recent studies point to the importance of the interaction between it and glutamate. One important component of this network is the anterior nucleus accumbens shell (aNAcSh), which sends GABAergic projections into the lateral hypothalamus (LH) and receives extensive glutamatergic inputs from, among others, the medial prefrontal cortex (mPFC). The effects of glutamatergic activation of aNAcSh on the ingestion of rewarding stimuli as well as its effect in the LH and mPFC are not well understood. Therefore, we studied behaving mice that express a light-gated channel (ChR2) in glutamatergic fibers in their aNAcSh while recording from neurons in the aNAcSh, or mPFC or LH. In Thy1-ChR2, but not wild-type, mice activation of aNAcSh fibers transiently stopped the mice licking for sucrose or an empty sipper. Stimulation of aNAcSh fibers both activated and inhibited single-unit responses aNAcSh, mPFC, and LH, in a manner that maintains firing rate homeostasis. One population of licking-inhibited pMSNs in the aNAcSh was also activated by optical stimulation, suggesting their relevance in the cessation of feeding. A rewarding aspect of stimulation of glutamatergic inputs was found when the Thy1-ChR2 mice learned to nose-poke to self-stimulate these inputs, indicating that bulky stimulation of these fibers are rewarding in the sense of wanting. Stimulation of excitatory afferents evoked both monosynaptic and polysynaptic responses distributed in the three recorded areas. In summary, we found that activation of glutamatergic aNAcSh fibers is both rewarding and transiently inhibits feeding. SIGNIFICANCE STATEMENT: We have established that the activation of glutamatergic fibers in the anterior nucleus accumbens shell (aNAcSh) transiently stops feeding and yet, because mice self-stimulate, is rewarding in the sense of wanting. Moreover, we have characterized single-unit responses of distributed components of a hedonic network (comprising the aNAcSh, medial prefrontal cortex, and lateral hypothalamus) recruited by activation of glutamatergic aNAcSh afferents that are involved in encoding a positive valence signal important for the wanting of a reward and that transiently stops ongoing consummatory actions, such as licking.


Assuntos
Comportamento Alimentar/fisiologia , Glutamatos/fisiologia , Região Hipotalâmica Lateral/fisiologia , Fibras Nervosas/fisiologia , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiologia , Córtex Pré-Frontal/fisiologia , Recompensa , Animais , Channelrhodopsins , Feminino , Masculino , Camundongos , Neurônios Aferentes/fisiologia , Optogenética , Técnicas de Patch-Clamp , Autoestimulação , Sinapses/fisiologia
11.
Clin Infect Dis ; 62(3): 273-279, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26462745

RESUMO

BACKGROUND: Two proven nosocomial cases of Legionella pneumonia occurred at the Wesley Hospital (Brisbane, Australia) in May 2013. To trace the epidemiology of these cases, whole genome sequence analysis was performed on Legionella pneumophila isolates from the infected patients, prospective isolates collected from the hospital water distribution system (WDS), and retrospective patient isolates available from the Wesley Hospital and other local hospitals. METHODS: Legionella pneumophila serogroup 1 isolates were cultured from patient sputum (n = 3), endobronchial washings (n = 3), pleural fluid (n = 1), and the Wesley Hospital WDS (n = 39). Whole genome sequencing and de novo assembly allowed comparison with the L. pneumophila Paris reference strain to infer phylogenetic and epidemiological relationships. Rapid disinfection of the hospital WDS with a chlorinated, alkaline detergent and subsequent superchlorination followed by maintenance of residual free chlorine, combined with removal of redundant plumbing, was instituted. RESULTS: The 2011 and 2013 L. pneumophila patient isolates were serogroup 1 and closely related to all 2013 hospital water isolates based on single nucleotide polymorphisms and mobile genetic element profiles, suggesting a single L. pneumophila population as the source of nosocomial infection. The L. pneumophila population has evolved to comprise 3 clonal variants, each associated with different parts of the hospital WDS. CONCLUSIONS: This study provides an exemplar for the use of clinical and genomic epidemiological methods together with a program of rapid, effective remedial biofilm, plumbing and water treatment to characterize and eliminate a L. pneumophila population responsible for nosocomial infections.


Assuntos
Infecção Hospitalar/epidemiologia , Surtos de Doenças , Controle de Infecções/métodos , Legionella pneumophila/isolamento & purificação , Doença dos Legionários/epidemiologia , Sorogrupo , Idoso , Austrália/epidemiologia , Brônquios/microbiologia , Infecção Hospitalar/prevenção & controle , Desinfecção/métodos , Feminino , Genoma Bacteriano , Humanos , Legionella pneumophila/classificação , Legionella pneumophila/genética , Doença dos Legionários/prevenção & controle , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Pleura/microbiologia , Análise de Sequência de DNA , Escarro/microbiologia , Microbiologia da Água
12.
J Neurophysiol ; 116(2): 563-74, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27169505

RESUMO

We describe a technique to semichronically record the cortical extracellular neural activity in the behaving monkey employing commercial high-density electrodes. After the design and construction of low cost microdrives that allow varying the depth of the recording locations after the implantation surgery, we recorded the extracellular unit activity from pools of neurons at different depths in the presupplementary motor cortex (pre-SMA) of a rhesus monkey trained in a tapping task. The collected data were processed to classify cells as putative pyramidal cells or interneurons on the basis of their waveform features. We also demonstrate that short time cross-correlogram occasionally yields unit pairs with high short latency (<5 ms), narrow bin (<3 ms) peaks, indicative of monosynaptic spike transmission from pre- to postsynaptic neurons. These methods have been verified extensively in rodents. Finally, we observed that the pattern of population activity was repetitive over distinct trials of the tapping task. These results show that the semichronic technique is a viable option for the large-scale parallel recording of local circuit activity at different depths in the cortex of the macaque monkey and other large species.


Assuntos
Potenciais de Ação/fisiologia , Córtex Motor/citologia , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Vigília , Animais , Eletrodos Implantados , Macaca mulatta , Masculino , Tempo de Reação , Fatores de Tempo
13.
Glob Chang Biol ; 22(6): 2025-37, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26644007

RESUMO

Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.


Assuntos
Exoesqueleto/fisiologia , Calcificação Fisiológica , Cadeia Alimentar , Pectinidae/fisiologia , Água do Mar/química , Adaptação Fisiológica , Animais , Chile , Quitina/química , Quitina Sintase/química , Mudança Climática , Concentração de Íons de Hidrogênio , Oceanos e Mares , Consumo de Oxigênio
15.
J Neurosci ; 34(11): 3910-23, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24623769

RESUMO

Gamma (γ) and beta (ß) oscillations seem to play complementary functions in the cortico-basal ganglia-thalamo-cortical circuit (CBGT) during motor behavior. We investigated the time-varying changes of the putaminal spiking activity and the spectral power of local field potentials (LFPs) during a task where the rhythmic tapping of monkeys was guided by isochronous stimuli separated by a fixed duration (synchronization phase), followed by a period of internally timed movements (continuation phase). We found that the power of both bands and the discharge rate of cells showed an orderly change in magnitude as a function of the duration and/or the serial order of the intervals executed rhythmically. More LFPs were tuned to duration and/or serial order in the ß- than the γ-band, although different values of preferred features were represented by single cells and by both bands. Importantly, in the LFPs tuned to serial order, there was a strong bias toward the continuation phase for the ß-band when aligned to movements, and a bias toward the synchronization phase for the γ-band when aligned to the stimuli. Our results suggest that γ-oscillations reflect local computations associated with stimulus processing, whereas ß-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of CBGT, during internally driven rhythmic tapping.


Assuntos
Gânglios da Base/fisiologia , Sincronização Cortical/fisiologia , Macaca mulatta/fisiologia , Modelos Neurológicos , Periodicidade , Desempenho Psicomotor/fisiologia , Potenciais de Ação/fisiologia , Animais , Gânglios da Base/citologia , Análise de Fourier , Masculino , Movimento/fisiologia , Putamen/citologia , Putamen/fisiologia
16.
Eur J Neurosci ; 41(5): 586-602, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25728178

RESUMO

We determined the response properties of neurons in the primate medial premotor cortex that were classified as sensory or motor during isochronous tapping to a visual or auditory metronome, using different target intervals and three sequential elements in the task. The cell classification was based on a warping transformation, which determined whether the cell activity was statistically aligned to sensory or motor events, finding a large proportion of cells classified as sensory or motor. Two distinctive clusters of sensory cells were observed, i.e. one cell population with short response-onset latencies to the previous stimulus, and another that was probably predicting the occurrence of the next stimuli. These cells were called sensory-driven and stimulus-predicting neurons, respectively. Sensory-driven neurons showed a clear bias towards the visual modality and were more responsive to the first stimulus, with a decrease in activity for the following sequential elements of the metronome. In contrast, stimulus-predicting neurons were bimodal and showed similar response profiles across serial-order elements. Motor cells showed a consecutive activity onset across discrete neural ensembles, generating a rapid succession of activation patterns between the two taps defining a produced interval. The cyclical configuration in activation profiles engaged more motor cells as the serial-order elements progressed across the task, and the rate of cell recruitment over time decreased as a function of the target interval. Our findings support the idea that motor cells were responsible for the rhythmic progression of taps in the task, gaining more importance as the trial advanced, while, simultaneously, the sensory-driven cells lost their functional impact.


Assuntos
Percepção Auditiva , Córtex Motor/fisiologia , Tempo de Reação , Células Receptoras Sensoriais/fisiologia , Percepção Visual , Animais , Macaca mulatta , Masculino , Córtex Motor/citologia
17.
Pain Pract ; 15(7): 643-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24766769

RESUMO

The Brief Pain Inventory (BPI) is a widely used pain measurement tool. There are 2 versions, the BPI Long Form (BPI-LF) and Short Form (BPI-SF), which share 2 core scales measuring pain severity and pain interference but which use different recall periods (24 hours vs. 1 week). To date, the BPI-SF has not been validated for use in Spain. This study investigated the psychometric properties of the BPI-SF Spanish version and compared results on the core scales between BPI-LF and BPI-SF. The data came from a 3-month observational study of 3,029 nononcologic patients managed in Spanish pain units. The BPI-SF's reliability, validity, and responsiveness were assessed. The effect of different recall periods was investigated by using intraclass correlation coefficients (ICCs) to determine the strength of correlation between BPI-LF and BPI-SF. The BPI-SF showed good reliability, with Cronbach's alphas of 0.931 for the severity and interference scales, which also discriminated well between patients reporting different levels of quality of life on EuroQol-5D dimensions (between group effect sizes [ESs] over 0.8). Substantial improvements were seen on both subscales after 3 months of treatment (ES of 1.76 for pain severity and 1.51 for pain interference). Recall period did not noticeably affect scores; ICCs (95% CI) between the long and short versions were 0.946 (0.938 to 0.954) and 0.929 (0.919 to 0.939) for the severity and interference subscales, respectively. The Spanish version of the BPI-SF is a valid and reliable instrument to measure pain severity and interference.


Assuntos
Multilinguismo , Medição da Dor/normas , Dor/diagnóstico , Dor/epidemiologia , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias , Medição da Dor/métodos , Estudos Prospectivos , Psicometria/métodos , Psicometria/normas , Qualidade de Vida , Reprodutibilidade dos Testes , Inquéritos e Questionários/normas
18.
Cir Esp ; 93(7): 444-9, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-25956459

RESUMO

INTRODUCTION: The objectives of this study were to investigate the relationship between several factors and the incidence of postoperative abdominal wall dehiscence (POAD), and to estimate the influence of POAD on in-hospital mortality, excess length of stay and costs. METHODS: Retrospective observational study of a sample of abdominal surgery patients from a minimal basic data set of 87 Spanish hospitals during 2008-2010. RESULTS: Among 323,894 admissions for abdominal surgery reviewed there were 2,294 patients with POAD. Elderly patients, male, with non-elective admission, with alcohol, tobacco or drugs abuse, and with more comorbidities had higher incidence. POAD patients had an increase in in-hospital death (mortality excess of 107.5%), excess length of stay (15.6 days) and higher cost (14,327 euros). CONCLUSIONS: Certain demographic and behavioral variables, and several comorbidities are associated with the incidence of POAD, and this complication shows an increase in in-hospital mortality, the length of hospital stay and costs. Preventive measures might decrease the incidence of POAD and its impact on health and extra-costs.


Assuntos
Parede Abdominal/cirurgia , Custos de Cuidados de Saúde , Mortalidade Hospitalar , Tempo de Internação/economia , Tempo de Internação/estatística & dados numéricos , Deiscência da Ferida Operatória/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco
19.
J Neurophysiol ; 111(10): 2138-49, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24572098

RESUMO

A critical question in tapping behavior is to understand whether the temporal control is exerted on the duration and trajectory of the downward-upward hand movement or on the pause between hand movements. In the present study, we determined the duration of both the movement execution and pauses of monkeys performing a synchronization-continuation task (SCT), using the speed profile of their tapping behavior. We found a linear increase in the variance of pause-duration as a function of interval, while the variance of the motor implementation was relatively constant across intervals. In fact, 96% of the variability of the duration of a complete tapping cycle (pause + movement) was due to the variability of the pause duration. In addition, we performed a Bayesian model selection to determine the effect of interval duration (450-1,000 ms), serial-order (1-6 produced intervals), task phase (sensory cued or internally driven), and marker modality (auditory or visual) on the duration of the movement-pause and tapping movement. The results showed that the most important parameter used to successfully perform the SCT was the control of the pause duration. We also found that the kinematics of the tapping movements was concordant with a stereotyped ballistic control of the hand pressing the push-button. The present findings support the idea that monkeys used an explicit timing strategy to perform the SCT, where a dedicated timing mechanism controlled the duration of the pauses of movement, while also triggered the execution of fixed movements across each interval of the rhythmic sequence.


Assuntos
Destreza Motora , Periodicidade , Desempenho Psicomotor , Estimulação Acústica , Algoritmos , Animais , Teorema de Bayes , Fenômenos Biomecânicos , Sinais (Psicologia) , Mãos , Macaca mulatta , Masculino , Modelos Psicológicos , Estimulação Luminosa , Análise e Desempenho de Tarefas , Fatores de Tempo , Gravação em Vídeo
20.
Adv Exp Med Biol ; 829: 143-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358709

RESUMO

The precise quantification of time in the subsecond scale is critical for many complex behaviors including music and dance appreciation/execution, speech comprehension/articulation, and the performance of many sports. Nevertheless, its neural underpinnings are largely unknown. Recent neurophysiological experiments from our laboratory have shown that the cell activity in the medial premotor areas (MPC) of macaques can represent different aspects of temporal processing during a synchronization-continuation tapping task (SCT). In this task the rhythmic behavior of monkeys was synchronized to a metronome of isochronous stimuli in the hundreds of milliseconds range (synchronization phase), followed by a period where animals internally temporalized their movements (continuation phase). Overall, we found that the time-keeping mechanism in MPC is governed by different layers of neural clocks. Close to the temporal control of movements are two separate populations of ramping cells that code for elapsed or remaining time for a tapping movement during the SCT. Thus, the sensorimotor loops engaged during the task may depend on the cyclic interplay between two neuronal chronometers that quantify in their instantaneous discharge rate the time passed and the remaining time for an action. In addition, we found MPC neurons that are tuned to the duration of produced intervals during the rhythmic task, showing an orderly variation in the average discharge rate as a function of duration. All the tested durations in the subsecond scale were represented in the preferred intervals of the cell population. Most of the interval-tuned cells were also tuned to the ordinal structure of the six intervals produced sequentially in the SCT. Hence, this next level of temporal processing may work as the notes of a musical score, providing information to the timing network about what duration and ordinal element of the sequence are being executed. Finally, we describe how the timing circuit can use a dynamic neural representation of the passage of time and the context in which the intervals are executed by integrating the time-varying activity of populations of cells. These neural population clocks can be defined as distinct trajectories in the multidimensional cell response-space. We provide a hypothesis of how these different levels of neural clocks can interact to constitute a coherent timing machine that controls the rhythmic behavior during the SCT.


Assuntos
Relógios Biológicos/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Neurofisiologia , Percepção do Tempo/fisiologia , Animais , Humanos , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA