Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 58(2): 255-68, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25866245

RESUMO

PTEN is proposed to function at the plasma membrane, where receptor tyrosine kinases are activated. However, the majority of PTEN is located throughout the cytoplasm. Here, we show that cytoplasmic PTEN is distributed along microtubules, tethered to vesicles via phosphatidylinositol 3-phosphate (PI(3)P), the signature lipid of endosomes. We demonstrate that the non-catalytic C2 domain of PTEN specifically binds PI(3)P through the CBR3 loop. Mutations render this loop incapable of PI(3)P binding and abrogate PTEN-mediated inhibition of PI 3-kinase/AKT signaling. This loss of function is rescued by fusion of the loop mutant PTEN to FYVE, the canonical PI(3)P binding domain, demonstrating the functional importance of targeting PTEN to endosomal membranes. Beyond revealing an upstream activation mechanism of PTEN, our data introduce the concept of PI 3-kinase signal activation on the vast plasma membrane that is contrasted by PTEN-mediated signal termination on the small, discrete surfaces of internalized vesicles.


Assuntos
PTEN Fosfo-Hidrolase/química , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Sítios de Ligação , Camundongos , Microtúbulos/enzimologia , Modelos Moleculares , Células NIH 3T3 , Estrutura Secundária de Proteína , Transdução de Sinais
2.
Eur J Neurosci ; 51(4): 1074-1086, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31730244

RESUMO

A decade of genetic studies has established contactin-associated protein-like 2 (CNTNAP2) as a prominent susceptibility gene associated with multiple neurodevelopmental disorders. The development and characterization of Cntnap2 knockout models in multiple species have bolstered this claim by establishing clear connections with certain endophenotypes. Despite these remarkable in vivo findings, CNTNAP2's molecular functions are relatively unexplored, highlighting the need to identify novel protein partners. Here, we characterized an interaction between CNTNAP2 and partitioning-defective 3 (PAR3)-a polarity molecule isolated in a yeast two-hybrid screen with CNTNAP2's C-terminus. We provide evidence that the two proteins interact via PDZ domain-mediated binding, that CNTNAP2+ /PAR3+ complexes are largely associated with clathrin-coated endocytic vesicles in heterologous cells and that PAR3 causes an enlargement of CNTNAP2 puncta size. Live imaging and fluorescence recovery after photobleaching (FRAP) reveals that PAR3 limits the mobility of CNTNAP2. Finally, overexpression of PAR3 but not a PAR3 mutant lacking all PDZ domains (PAR3∆PDZall) can cluster endogenous CNTNAP2 in primary neurons. Collectively, we conclude that PAR3 regulates CNTNAP2 spatial localization.


Assuntos
Endossomos , Neurônios , Ligação Proteica
3.
Bioconjug Chem ; 26(9): 1963-71, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26301573

RESUMO

The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells.


Assuntos
Adenilil Ciclases/metabolismo , Corantes Fluorescentes/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/química , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Peptídeos/química , Animais , Colforsina/farmacologia , Cor , Expressão Gênica , Células HEK293 , Humanos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Camundongos , Modelos Moleculares , Conformação Proteica , Coloração e Rotulagem
4.
Cell Rep ; 42(7): 112784, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428632

RESUMO

Rare genetic variants in ANK2, which encodes ankyrin-B, are associated with neurodevelopmental disorders (NDDs); however, their pathogenesis is poorly understood. We find that mice with prenatal deletion in cortical excitatory neurons and oligodendrocytes (Ank2-/-:Emx1-Cre), but not with adolescent deletion in forebrain excitatory neurons (Ank2-/-:CaMKIIα-Cre), display severe spontaneous seizures, increased mortality, hyperactivity, and social deficits. Calcium imaging of cortical slices from Ank2-/-:Emx1-Cre mice shows increased neuronal calcium event amplitude and frequency, along with network hyperexcitability and hypersynchrony. Quantitative proteomic analysis of cortical synaptic membranes reveals upregulation of dendritic spine plasticity-regulatory proteins and downregulation of intermediate filaments. Characterization of the ankyrin-B interactome identifies interactors associated with autism and epilepsy risk factors and synaptic proteins. The AMPA receptor antagonist, perampanel, restores cortical neuronal activity and partially rescues survival in Ank2-/-:Emx1-Cre mice. Our findings suggest that synaptic proteome alterations resulting from Ank2 deletion impair neuronal activity and synchrony, leading to NDDs-related behavioral impairments.


Assuntos
Anquirinas , Prosencéfalo , Proteoma , Convulsões , Animais , Camundongos , Anquirinas/genética , Cálcio , Fenótipo , Prosencéfalo/fisiopatologia , Proteoma/genética , Proteômica , Convulsões/genética , Camundongos Knockout
5.
Neurosci Lett ; 701: 92-99, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-30779956

RESUMO

GABAergic interneurons are emerging as prominent substrates in the pathophysiology of multiple neurodevelopmental disorders, including autism spectrum disorders, schizophrenia, intellectual disability, and epilepsy. Interneuron excitatory activity is influenced by 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid receptors (AMPARs), which in turn affects excitatory transmission in the central nervous system. Yet how dysregulation of interneuronal AMPARs distinctly contributes to the molecular underpinning of neurobiological disease is drastically underexplored. Contactin-associated protein-like 2 (CNTNAP2) is a neurexin-related adhesion molecule shown to mediate AMPAR subcellular distribution while calcium/calmodulin-dependent serine protein kinase (CASK) is a multi-functional scaffold involved with glutamate receptor trafficking. Mutations in both genes have overlapping disease associations, including autism spectrum disorders, intellectual disability, and epilepsy, thus suggesting converging perturbations of excitatory/inhibitory balance. Our lab has previously shown that CNTNAP2 stabilizes interneuron dendritic arbors through CASK and that CNTNAP2 regulates AMPAR subunit GluA1 trafficking in excitatory neurons. The interaction between these three proteins, however, has not been studied in interneurons. Using biochemical techniques, structured illumination microscopy (SIM) and shRNA technology, we first confirm that these three proteins interact in mouse brain, and then examined relationship between CNTNAP2, CASK and GluA1 in mature interneurons. Using SIM, we ascertain that a large fraction of endogenous CNTNAP2, CASK, and GluA1 molecules collectively colocalize together in a tripartite manner. Finally, individual knockdown of either CNTNAP2 or CASK similarly alter GluA1 levels and localization. These findings offer insight to molecular mechanisms underlying GluA1 regulation in interneurons.


Assuntos
Guanilato Quinases/deficiência , Guanilato Quinases/metabolismo , Interneurônios/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Receptores de AMPA/metabolismo , Animais , Interneurônios/citologia , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
6.
Front Cell Neurosci ; 11: 337, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163049

RESUMO

BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in ß4+/- and ß4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in ß4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking.

7.
Cancer Cell ; 20(2): 173-86, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21840483

RESUMO

Hyperactivation of the PI 3-kinase/AKT pathway is a driving force of many cancers. Here we identify the AKT-inactivating phosphatase PHLPP1 as a prostate tumor suppressor. We show that Phlpp1-loss causes neoplasia and, on partial Pten-loss, carcinoma in mouse prostate. This genetic setting initially triggers a growth suppressive response via p53 and the Phlpp2 ortholog, and reveals spontaneous Trp53 inactivation as a condition for full-blown disease. Surprisingly, the codeletion of PTEN and PHLPP1 in patient samples is highly restricted to metastatic disease and tightly correlated to deletion of TP53 and PHLPP2. These data establish a conceptual framework for progression of PTEN mutant prostate cancer to life-threatening disease.


Assuntos
Mutação , Proteínas Nucleares/fisiologia , PTEN Fosfo-Hidrolase/genética , Fosfoproteínas Fosfatases/fisiologia , Neoplasias da Próstata/patologia , Progressão da Doença , Humanos , Masculino , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA