Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(42): 26008-26019, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020304

RESUMO

Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.


Assuntos
Mama/patologia , Cálcio/metabolismo , Mecanotransdução Celular , NADPH Oxidase 2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Microtúbulos/metabolismo , NADPH Oxidase 2/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Taxa de Sobrevida , Canais de Cátion TRPM/genética , Microambiente Tumoral
2.
Breast Cancer Res ; 24(1): 13, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35164808

RESUMO

Clinical cancer imaging focuses on tumor growth rather than metastatic phenotypes. The microtubule-depolymerizing drug, Vinorelbine, reduced the metastatic phenotypes of microtentacles, reattachment and tumor cell clustering more than tumor cell viability. Treating mice with Vinorelbine for only 24 h had no significant effect on primary tumor survival, but median metastatic tumor survival was extended from 8 to 30 weeks. Microtentacle inhibition by Vinorelbine was also detectable within 1 h, using tumor cells isolated from blood samples. As few as 11 tumor cells were sufficient to yield 90% power to detect this 1 h Vinorelbine drug response, demonstrating feasibility with the small number of tumor cells available from patient biopsies. This study establishes a proof-of-concept that targeted microtubule disruption can selectively inhibit metastasis and reveals that existing FDA-approved therapies could have anti-metastatic actions that are currently overlooked when focusing exclusively on tumor growth.


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Microtúbulos , Metástase Neoplásica , Vinorelbina/farmacologia
3.
J Physiol ; 597(3): 869-887, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556208

RESUMO

KEY POINTS: Breast cancer 1 early onset gene codes for the DNA repair enzyme, breast cancer type 1 susceptibility protein (BRCA1). The gene is prone to mutations that cause a loss of protein function. BRCA1/Brca1 has recently been found to regulate several cellular pathways beyond DNA repair and is expressed in skeletal muscle. Skeletal muscle specific knockout of Brca1 in mice caused a loss of muscle quality, identifiable by reductions in muscle force production and mitochondrial respiratory capacity. Loss of muscle quality was associated with a shift in muscle phenotype and an accumulation of mitochondrial DNA mutations. These results demonstrate that BRCA1 is necessary for skeletal muscle function and that increased mitochondrial DNA mutations may represent a potential underlying mechanism. ABSTRACT: Recent evidence suggests that the breast cancer 1 early onset gene (BRCA1) influences numerous peripheral tissues, including skeletal muscle. The present study aimed to determine whether induced-loss of the breast cancer type 1 susceptibility protein (Brca1) alters skeletal muscle function. We induced genetic ablation of exon 11 in the Brca1 gene specifically in the skeletal muscle of adult mice to generate skeletal muscle-specific Brca1 homozygote knockout (Brca1KOsmi ) mice. Brca1KOsmi exhibited kyphosis and decreased maximal isometric force in limb muscles compared to age-matched wild-type mice. Brca1KOsmi skeletal muscle shifted toward an oxidative muscle fibre type and, in parallel, increased myofibre size and reduced capillary numbers. Unexpectedly, myofibre bundle mitochondrial respiration was reduced, whereas contraction-induced lactate production was elevated in Brca1KOsmi muscle. Brca1KOsmi mice accumulated mitochondrial DNA mutations and exhibited an altered mitochondrial morphology characterized by distorted and enlarged mitochondria, and these were more susceptible to swelling. In summary, skeletal muscle-specific loss of Brca1 leads to a myopathy and mitochondriopathy characterized by reductions in skeletal muscle quality and a consequent kyphosis. Given the substantial impact of BRCA1 mutations on cancer development risk in humans, a parallel loss of BRCA1 function in patient skeletal muscle cells would potentially result in implications for human health.


Assuntos
Proteína BRCA1/genética , Mitocôndrias Musculares/patologia , Debilidade Muscular/genética , Músculo Esquelético/patologia , Animais , DNA Mitocondrial/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética
4.
Biochemistry ; 56(17): 2328-2337, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28409622

RESUMO

Biochemical and structural studies demonstrate that S100A1 is involved in a Ca2+-dependent interaction with the type 2α and type 2ß regulatory subunits of protein kinase A (PKA) (RIIα and RIIß) to activate holo-PKA. The interaction was specific for S100A1 because other calcium-binding proteins (i.e., S100B and calmodulin) had no effect. Likewise, a role for S100A1 in PKA-dependent signaling was established because the PKA-dependent subcellular redistribution of HDAC4 was abolished in cells derived from S100A1 knockout mice. Thus, the Ca2+-dependent interaction between S100A1 and the type 2 regulatory subunits represents a novel mechanism that provides a link between Ca2+ and PKA signaling, which is important for the regulation of gene expression in skeletal muscle via HDAC4 cytosolic-nuclear trafficking.


Assuntos
Sinalização do Cálcio , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Histona Desacetilases/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas S100/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Células Cultivadas , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Ativação Enzimática , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Histona Desacetilases/genética , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/enzimologia , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas S100/genética
5.
Cell Mol Life Sci ; 72(1): 153-64, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-24947322

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated significant alterations in the neuromuscular junction (NMJ) morphology and resulting neuromuscular transmission failure (NTF) 24 h after injury in mdx mice (murine model for DMD). Here we determine the contribution of NMJ morphology and NTF to the recovery of muscle contractile function post-injury. NMJ morphology and NTF rates were assessed day 0 (immediately after injury) and days 1, 7, 14 and 21 after quadriceps injury. Eccentric injury of the quadriceps resulted in a significant loss of maximal torque in both WT (39 ± 6 %) and mdx (76 ± 8 %) with a full recovery in WT by day 7 and in mdx by day 21. Post-injury alterations in NMJ morphology and NTF were found only in mdx, were limited to days 0 and 1, and were independent of changes in MuSK or AChR expression. Such early changes at the NMJ after injury are consistent with mechanical disruption rather than newly forming NMJs. Furthermore, we show that the dense microtubule network that underlies the NMJ is significantly reduced and disorganized in mdx compared to WT. These structural changes at the NMJ may play a role in the increased NMJ disruption and the exaggerated loss of nerve-evoked muscle force seen after injury to dystrophic muscles.


Assuntos
Distrofina/fisiologia , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/lesões , Junção Neuromuscular/metabolismo , Regeneração/fisiologia , Animais , Western Blotting , Células Cultivadas , Imunofluorescência , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Junção Neuromuscular/fisiopatologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Colinérgicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Am J Physiol Cell Physiol ; 308(9): C699-709, 2015 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-25652448

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca²âº have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca²âº-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was to assess the effects of SERCA1 overexpression in the more severe mdx/Utr(-/-) mouse model of DMD. Mice overexpressing SERCA1 were crossed with mdx/Utr ± mice to generate mdx/Utr(-/-)/+SERCA1 mice and compared with wild-type (WT), WT/+SERCA1, mdx/+SERCA1, and genotype controls. Mice were assessed at ∼12 wk of age for changes in Ca²âº handling, muscle mass, quadriceps torque, markers of muscle damage, and response to repeated eccentric contractions. SERCA1-overexpressing mice had a two- to threefold increase in maximal sarcoplasmic reticulum Ca²âº-ATPase activity compared with WT which was associated with normalization in body mass for both mdx/+SERCA1 and mdx/Utr(-/-)/+SERCA1. Torque deficit in the quadriceps after eccentric injury was 2.7-fold greater in mdx/Utr(-/-) vs. WT mice, but only 1.5-fold greater in mdx/Utr(-/-)/+SERCA1 vs. WT mice, an attenuation of 44%. Markers of muscle damage (% centrally nucleated fibers, necrotic area, and serum creatine kinase levels) were higher in both mdx and mdx/Utr(-/-) vs. WT, and all were attenuated by overexpression of SERCA1. These data indicate that SERCA1 overexpression ameliorates functional impairments and cellular markers of damage in a more severe mouse model of DMD. These findings support targeting intracellular Ca²âº control as a therapeutic approach for DMD.


Assuntos
Contração Muscular , Força Muscular , Distrofia Muscular de Duchenne/enzimologia , Músculo Quadríceps/enzimologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Animais , Biomarcadores/sangue , Fenômenos Biomecânicos , Sinalização do Cálcio , Creatina Quinase Forma MM/sangue , Modelos Animais de Doenças , Genótipo , Hipertrofia , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Necrose , Tamanho do Órgão , Fenótipo , Músculo Quadríceps/patologia , Músculo Quadríceps/fisiopatologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Índice de Gravidade de Doença , Torque , Regulação para Cima , Utrofina/deficiência , Utrofina/genética
7.
APL Bioeng ; 8(2): 026129, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38938688

RESUMO

Mechanobiology is a rapidly advancing field, with growing evidence that mechanical signaling plays key roles in health and disease. To accelerate mechanobiology-based drug discovery, novel in vitro systems are needed that enable mechanical perturbation of cells in a format amenable to high throughput screening. Here, both a mechanical stretch device and 192-well silicone flexible linear stretch plate were designed and fabricated to meet high throughput technology needs for cell stretch-based applications. To demonstrate the utility of the stretch plate in automation and screening, cell dispensing, liquid handling, high content imaging, and high throughput sequencing platforms were employed. Using this system, an assay was developed as a biological validation and proof-of-concept readout for screening. A mechano-transcriptional stretch response was characterized using focused gene expression profiling measured by RNA-mediated oligonucleotide Annealing, Selection, and Ligation with Next-Gen sequencing. Using articular chondrocytes, a gene expression signature containing stretch responsive genes relevant to cartilage homeostasis and disease was identified. The possibility for integration of other stretch sensitive cell types (e.g., cardiovascular, airway, bladder, gut, and musculoskeletal), in combination with alternative phenotypic readouts (e.g., protein expression, proliferation, or spatial alignment), broadens the scope of high throughput stretch and allows for wider adoption by the research community. This high throughput mechanical stress device fills an unmet need in phenotypic screening technology to support drug discovery in mechanobiology-based disease areas.

8.
J Physiol ; 591(2): 559-70, 2013 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-23109110

RESUMO

The most common and severe form of muscular dystrophy is Duchenne muscular dystrophy (DMD), a disorder caused by the absence of dystrophin, a structural protein found on the cytoplasmic surface of the sarcolemma of striated muscle fibres. Considerable attention has been dedicated to studying myofibre damage and muscle plasticity, but there is little information to determine if damage from contraction-induced injury occurs at or near the nerve terminal axon. We used α-bungarotoxin to compare neuromuscular junction (NMJ) morphology in healthy (wild-type, WT) and dystrophic (mdx) mouse quadriceps muscles and evaluated transcript levels of the post-synaptic muscle-specific kinase signalling complex. Our focus was to study changes in NMJs after injury induced with an established in vivo animal injury model. Neuromuscular transmission, electromyography (EMG), and NMJ morphology were assessed 24 h after injury. In non-injured muscle, muscle-specific kinase expression was significantly decreased in mdx compared to WT. Injury resulted in a significant loss of maximal torque in WT (39 ± 6%) and mdx (76 ± 8%) quadriceps, but significant changes in NMJ morphology, neuromuscular transmission and EMG data were found only in mdx following injury. Compared with WT mice, motor end-plates of mdx mice demonstrated less continuous morphology, more disperse acetylcholine receptor aggregates and increased number of individual acetylcholine receptor clusters, an effect that was exacerbated following injury. Neuromuscular transmission failure increased and the EMG measures decreased after injury in mdx mice only. The data show that eccentric contraction-induced injury causes morphological and functional changes to the NMJs in mdx skeletal muscle, which may play a role in excitation-contraction coupling failure and progression of the dystrophic process.


Assuntos
Contração Isométrica , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Junção Neuromuscular/fisiopatologia , Animais , Axônios/ultraestrutura , Bungarotoxinas , Distrofina/genética , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Placa Motora/citologia , Distrofia Muscular de Duchenne/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , RNA Mensageiro/biossíntese , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Torque
9.
Muscle Nerve ; 47(4): 588-90, 2013 04.
Artigo em Inglês | MEDLINE | ID: mdl-23381871

RESUMO

INTRODUCTION: The ability to view individual myofibers is possible with many histological techniques, but not yet with standard in vivo imaging. Optical coherence tomography (OCT) is an emerging technology that can generate high resolution 1-10 µm cross-sectional imaging of tissue in vivo and in real time. METHODS: We used OCT to determine architectural differences of tibialis anterior muscles in situ from healthy mice (wild-type [WT], n = 4) and dystrophic mice (mdx, n = 4). After diffusion tensor imaging (DTI) and OCT, muscles were harvested, snap-frozen, and sectioned for staining with wheat germ agglutinin. RESULTS: DTI suggested differences in pennation and OCT was used to confirm this supposition. OCT indicated a shorter intramuscular tendon (WT/mdx ratio of 1.2) and an 18% higher degree of pennation in mdx. Staining confirmed these architectural changes. CONCLUSIONS: Architectural changes in mdx muscles, which could contribute to reduction of force, are detectable with OCT.


Assuntos
Músculo Esquelético , Distrofia Muscular Animal/patologia , Tomografia de Coerência Óptica/métodos , Animais , Imagem de Tensor de Difusão , Membro Posterior/anatomia & histologia , Membro Posterior/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/patologia
10.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36765843

RESUMO

Cytoskeletal remodeling in circulating tumor cells (CTCs) facilitates metastatic spread. Previous oncology studies examine sustained aberrant calcium (Ca2+) signaling and cytoskeletal remodeling scrutinizing long-term phenotypes such as tumorigenesis and metastasis. The significance of acute Ca2+ signaling in tumor cells that occur within seconds to minutes is overlooked. This study investigates rapid cytoplasmic Ca2+ elevation in suspended cells on actin and tubulin cytoskeletal rearrangements and the metastatic microtentacle (McTN) phenotype. The compounds Ionomycin and Thapsigargin acutely increase cytoplasmic Ca2+, suppressing McTNs in the metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-436. Functional decreases in McTN-mediated reattachment and cell clustering during the first 24 h of treatment are not attributed to cytotoxicity. Rapid cytoplasmic Ca2+ elevation was correlated to Ca2+-induced actin cortex contraction and rearrangement via myosin light chain 2 and cofilin activity, while the inhibition of actin polymerization with Latrunculin A reversed Ca2+-mediated McTN suppression. Preclinical and phase 1 and 2 clinical trial data have established Thapsigargin derivatives as cytotoxic anticancer agents. The results from this study suggest an alternative molecular mechanism by which these compounds act, and proof-of-principle Ca2+-modulating compounds can rapidly induce morphological changes in free-floating tumor cells to reduce metastatic phenotypes.

11.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034765

RESUMO

The tumor microenvironment and wound healing after injury, both contain extremely high concentrations of the extracellular signaling molecule, adenosine triphosphate (ATP) compared to normal tissue. P2Y2 receptor, an ATP-activated purinergic receptor, is typically associated with pulmonary, endothelial, and neurological cell signaling. Here we report its role and importance in breast epithelial cell signaling and how it’s altered in metastatic breast cancer. In response to ATP activation, P2Y2 receptor signaling causes an increase of intracellular Ca 2+ in non-tumorigenic breast epithelial cells, while their tumorigenic and metastatic counterparts have significantly reduced Ca 2+ responses. The non-tumorigenic cells respond to increased Ca 2+ with actin polymerization and localization to cellular junctions, while the metastatic cells remained unaffected. The increase in intracellular Ca 2+ after ATP stimulation could be blunted using a P2Y2 antagonist, which also prevented actin mobilization in non-tumorigenic breast epithelial cells. Furthermore, the lack of Ca 2+ concentration changes and actin mobilization in the metastatic breast cancer cells could be due to reduced P2Y2 expression, which correlates with poorer overall survival in breast cancer patients. This study elucidates rapid changes that occur after elevated intracellular Ca 2+ in breast epithelial cells and how metastatic cancer cells have adapted to evade this cellular response. STATEMENT OF SIGNIFICANCE: This work shows non-tumorigenic breast epithelial cells increase intracellular Ca 2+ after ATP-P2Y2 signaling and re-localize actin, while metastatic cells lack this response, due to decreased P2Y2 expression, which correlates with poorer survival.

12.
Am J Physiol Cell Physiol ; 303(2): C224-32, 2012 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-22592402

RESUMO

Intermediate filaments (IFs), composed of desmin and keratins, link myofibrils to each other and to the sarcolemma in skeletal muscle. Fast-twitch muscle of mice lacking the IF proteins, desmin and keratin 19 (K19), showed reduced specific force and increased susceptibility to injury in earlier studies. Here we tested the hypothesis that the number of malformed myofibers in mice lacking desmin (Des(-/-)), keratin 19 (K19(-/-)), or both IF proteins (double knockout, DKO) is increased and is coincident with altered excitation-contraction (EC) coupling Ca(2+) kinetics, as reported for mdx mice. We quantified the number of branched myofibers, characterized their organization with confocal and electron microscopy (EM), and compared the Ca(2+) kinetics of EC coupling in flexor digitorum brevis myofibers from adult Des(-/-), K19(-/-), or DKO mice and compared them to age-matched wild type (WT) and mdx myofibers. Consistent with our previous findings, 9.9% of mdx myofibers had visible malformations. Des(-/-) myofibers had more malformations (4.7%) than K19(-/-) (0.9%) or DKO (1.3%) myofibers. Confocal and EM imaging revealed no obvious changes in sarcomere misalignment at the branch points, and the neuromuscular junctions in the mutant mice, while more variably located, were limited to one per myofiber. Global, electrically evoked Ca(2+) signals showed a decrease in the rate of Ca(2+) uptake (decay rate) into the sarcoplasmic reticulum after Ca(2+) release, with the most profound effect in branched DKO myofibers (44% increase in uptake relative to WT). Although branched DKO myofibers showed significantly faster rates of Ca(2+) clearance, the milder branching phenotype observed in DKO muscle suggests that the absence of K19 corrects the defect created by the absence of desmin alone. Thus, there are complex roles for desmin-based and K19-based IFs in skeletal muscle, with the null and DKO mutations having different effects on Ca(2+) reuptake and myofiber branching.


Assuntos
Desmina/deficiência , Filamentos Intermediários/fisiologia , Queratina-19/deficiência , Fibras Musculares de Contração Rápida/fisiologia , Potenciais de Ação/genética , Animais , Desmina/genética , Filamentos Intermediários/química , Filamentos Intermediários/patologia , Queratina-19/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Fibras Musculares de Contração Rápida/química , Fibras Musculares de Contração Rápida/patologia , Mutação , Junção Neuromuscular/genética , Relação Estrutura-Atividade
13.
J Biomed Biotechnol ; 2011: 598358, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21960738

RESUMO

Triglyceride storage is altered across various chronic health conditions necessitating various techniques to visualize and quantify lipid droplets (LDs). Here, we describe the utilization of the BODIPY (493/503) dye in skeletal muscle as a means to analyze LDs. We found that the dye was a convenient and simple approach to visualize LDs in both sectioned skeletal muscle and cultured adult single fibers. Furthermore, the dye was effective in both fixed and nonfixed cells, and the staining seemed unaffected by permeabilization. We believe that the use of the BODIPY (493/503) dye is an acceptable alternative and, under certain conditions, a simpler method for visualizing LDs stored within skeletal muscle.


Assuntos
Compostos de Boro/química , Músculo Esquelético/química , Triglicerídeos/análise , Animais , Células Cultivadas , Fixadores/química , Corpos de Inclusão/química , Corpos de Inclusão/metabolismo , Metabolismo dos Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Ratos , Ratos Sprague-Dawley , Coloração e Rotulagem/métodos
14.
J Biomed Biotechnol ; 2011: 970726, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22190860

RESUMO

The purpose of this study was to determine if variables calculated from diffusion tensor imaging (DTI) would serve as a reliable marker of damage after a muscle strain injury in dystrophic (mdx) and wild type (WT) mice. Unilateral injury to the tibialis anterior muscle (TA) was induced in vivo by 10 maximal lengthening contractions. High resolution T1- and T2-weighted structural MRI, including T2 mapping and spin echo DTI was acquired on a 7T small animal MRI system. Injury was confirmed by a significant loss of isometric torque (85% in mdx versus 42% in WT). Greater increases in apparent diffusion coefficient (ADC), axial, and radial diffusivity (AD and RD) of the injured muscle were present in the mdx mice versus controls. These changes were paralleled by decreases in fractional anisotropy (FA). Additionally, T2 was increased in the mdx mice, but the spatial extent of the changes was less than those in the DTI parameters. The data suggest that DTI is an accurate indicator of muscle injury, even at early time points where the MR signal changes are dominated by local edema.


Assuntos
Imagem de Tensor de Difusão , Contração Muscular , Músculo Esquelético , Distrofias Musculares/diagnóstico por imagem , Distrofias Musculares/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/lesões , Músculo Esquelético/fisiopatologia , Radiografia
15.
Sci Rep ; 11(1): 3214, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547369

RESUMO

Mammosphere assays are widely used in vitro to identify prospective cancer-initiating stem cells that can propagate clonally to form spheres in free-floating conditions. However, the traditional mammosphere assay inevitably introduces cell aggregation that interferes with the measurement of true mammosphere forming efficiency. We developed a method to reduce tumor cell aggregation and increase the probability that the observed mammospheres formed are clonal in origin. Tethering individual tumor cells to lipid anchors prevents cell drift while maintaining free-floating characteristics. This enables real-time monitoring of single tumor cells as they divide to form mammospheres. Monitoring tethered breast cancer cells provided detailed size information that correlates directly to previously published single cell tracking data. We observed that 71% of the Day 7 spheres in lipid-coated wells were between 50 and 150 µm compared to only 37% in traditional low attachment plates. When an equal mixture of MCF7-GFP and MCF7-mCherry cells were seeded, 65% of the mammospheres in lipid-coated wells demonstrated single color expression whereas only 32% were single-colored in low attachment wells. These results indicate that using lipid tethering for mammosphere growth assays can reduce the confounding factor of cell aggregation and increase the formation of clonal mammospheres.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Agregação Celular , Técnicas de Cultura de Células , Feminino , Humanos , Lipídeos/química , Células MCF-7 , Esferoides Celulares/patologia , Células Tumorais Cultivadas
16.
Biophys Rev ; 12(6): 1343-1359, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33569087

RESUMO

Calcium is a versatile element that participates in cell signaling for a wide range of cell processes such as death, cell cycle, division, migration, invasion, metabolism, differentiation, autophagy, transcription, and others. Specificity of calcium in each of these processes is achieved through modulation of intracellular calcium concentrations by changing the characteristics (amplitude/frequency modulation) or location (spatial modulation) of the signal. Breast cancer utilizes calcium signaling as an advantage for survival and progression. This review integrates evidence showing that increases in expression of calcium channels, GPCRs, pumps, effectors, and enzymes, as well as resulting intracellular calcium signals, lead to high calcium and/or an elevated calcium- mobilizing capacity necessary for malignant functions such as migratory, invasive, proliferative, tumorigenic, or metastatic capacities.

17.
Cancers (Basel) ; 12(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503141

RESUMO

Mechanotransduction is the interpretation of physical cues by cells through mechanosensation mechanisms that elegantly translate mechanical stimuli into biochemical signaling pathways. While mechanical stress and their resulting cellular responses occur in normal physiologic contexts, there are a variety of cancer-associated physical cues present in the tumor microenvironment that are pathological in breast cancer. Mechanistic in vitro data and in vivo evidence currently support three mechanical stressors as mechanical modifiers in breast cancer that will be the focus of this review: stiffness, interstitial fluid pressure, and solid stress. Increases in stiffness, interstitial fluid pressure, and solid stress are thought to promote malignant phenotypes in normal breast epithelial cells, as well as exacerbate malignant phenotypes in breast cancer cells.

18.
Lab Chip ; 20(16): 2872-2888, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32744284

RESUMO

The technical challenges of imaging non-adherent tumor cells pose a critical barrier to understanding tumor cell responses to the non-adherent microenvironments of metastasis, like the bloodstream or lymphatics. In this study, we optimized a microfluidic device (TetherChip) engineered to prevent cell adhesion with an optically-clear, thermal-crosslinked polyelectrolyte multilayer nanosurface and a terminal lipid layer that simultaneously tethers the cell membrane for improved spatial immobilization. Thermal imidization of the TetherChip nanosurface on commercially-available microfluidic slides allows up to 98% of tumor cell capture by the lipid tethers. Importantly, time-lapse microscopy demonstrates that unique microtentacles on non-adherent tumor cells are rapidly destroyed during chemical fixation, but tethering microtentacles to the TetherChip surface efficiently preserves microtentacle structure post-fixation and post-blood isolation. TetherChips remain stable for more than 6 months, enabling shipment to distant sites. The broad retention capability of TetherChips allows comparison of multiple tumor cell types, revealing for the first time that carcinomas beyond breast cancer form microtentacles in suspension. Direct integration of TetherChips into the Vortex VTX-1 CTC isolation instrument shows that live CTCs from blood samples are efficiently captured on TetherChips for rapid fixation and same-day immunofluorescence analysis. Highly efficient and unbiased label-free capture of CTCs on a surface that allows rapid chemical fixation also establishes a streamlined clinical workflow to stabilize patient tumor cell samples and minimize analytical variables. While current studies focus primarily on CTC enumeration, this microfluidic device provides a novel platform for functional phenotype testing in CTCs with the ultimate goal of identifying anti-metastatic, patient-specific therapies.


Assuntos
Células Neoplásicas Circulantes , Adesão Celular , Contagem de Células , Linhagem Celular Tumoral , Membrana Celular , Separação Celular , Humanos , Polieletrólitos , Microambiente Tumoral
19.
Methods Mol Biol ; 1687: 57-72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29067656

RESUMO

Duchenne muscular dystrophy (DMD), caused by the absence of the protein dystrophin, is characterized as a neuromuscular disease in which muscle weakness, increased susceptibility to muscle injury, and inadequate repair appear to underlie the pathology. Considerable attention has been dedicated to studying muscle fiber damage, but there is little information to determine if damage from contraction-induced injury also occurs at or near the nerve terminal axon. Interestingly, both human patients and the mouse model for DMD (the mdx mouse) present fragmented neuromuscular junction (NMJ) morphology. Studies of mdx mice have revealed presynaptic and postsynaptic abnormalities, nerve terminal discontinuity, as well as increased susceptibility of the NMJ to contraction-induced injury with corresponding functional changes in neuromuscular transmission and nerve-evoked electromyography. Focusing on the NMJ as a contributor to functional deficits in the muscle represents a paradigm shift from the more prevalent myocentric perspectives. Further studies are needed to determine the extent to which the nerve-muscle interaction is disrupted in DMD and the role of the NMJ in the dystrophic progression. This chapter lists the tools needed for nerve terminal and NMJ structural analysis using fluorescence imaging, and provides a step-by-step outline for how to stain, image, and analyze the NMJ in skeletal muscle, with specific attention to mdx muscle.


Assuntos
Distrofina/genética , Músculo Esquelético/diagnóstico por imagem , Distrofia Muscular de Duchenne/diagnóstico , Junção Neuromuscular/diagnóstico por imagem , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/diagnóstico por imagem , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/patologia , Regeneração/genética , Transmissão Sináptica/genética
20.
iScience ; 8: 29-39, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30268511

RESUMO

The mammosphere assay has become widely employed to quantify stem-like cells in a population. However, the problem is there is no standard protocol employed by the field. Cell seeding densities of 1,000 to 100,000 cells/mL have been reported. These high densities lead to cellular aggregation. To address this, we have individually tracked 1,127 single MCF-7 and 696 single T47D human breast tumor cells by eye over the course of 14 days. This tracking has given us detailed information for the commonly used endpoints of 5, 7, and 14 days that is unclouded by cellular aggregation. This includes mean sphere sizes, sphere-forming efficiencies, and a well-defined minimum size for both lines. Importantly, we have correlated early cell division with eventual sphere formation. At 24 hr post seeding, we can predict the total spheres on day 14 with 98% accuracy in both lines. This approach removes cell aggregation and potentially shortens a 5- to 14-day assay to a 24 hours.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA