Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 39(5): 2022-2035, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36715565

RESUMO

Oil-in-water (O/W) microemulsions (ME) typically feature a low viscosity and exhibit ordinary viscosity reduction as a function of temperature. However, for certain applications, avoiding or even reverting the temperature trend might be required. This can be conceived by adding thermoresponsive (TR) block copolymers that induce network formation as the temperature increases. Accordingly, various ME-polymer mixtures were studied for which three different block copolymer architectures of BAB*-, B2AB*-, and B(AB*)2-types were employed. Here, "B" represents a permanently hydrophobic, "A" a permanently hydrophilic, and "B*" a TR block. For the TR-block, three different poly(acrylamide)s, namely poly(N-n-propylacrylamide) (pNPAm), poly(N,N-diethylacrylamide) (pDEAm), and poly(N-isopropylacrylamide) (pNiPAm), were used, which all exhibit a lower critical solution temperature. For a well-selected ME concentration, these block copolymers lead to a viscosity enhancement with increasing temperature. At a polymer concentration of about 22 g L-1, the most pronounced enhancement was observed for the pNPAm-based systems with factors up to 3, 5, and 8 for BAB*, B2AB*, and B(AB*)2, respectively. This phenomenon is caused by the formation of a transitory network mediated by TR-blocks, as evidenced by the direct correlation between the attraction strength and the viscosity enhancement. For applications requiring a high hydrophobic payload, which is attained via ME droplets, this kind of tailored temperature-dependent viscosity control of surfactant systems should therefore be advantageous.

2.
Langmuir ; 38(17): 5166-5182, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34734729

RESUMO

A nonionic double hydrophilic block copolymer with a long permanently hydrophilic and a small thermoresponsive block is synthesized by reversible addition-fragmentation chain-transfer polymerization (RAFT). By employing a specifically designed chain-transfer agent, the polymer is functionalized with complementary end groups which are suited for Förster resonance energy transfer (FRET). The end group attached to the permanently hydrophilic block of poly(N,N-dimethylacrylamide) pDMAm is designed as a permanently hydrophobic segment ("sticker") comprising a long alkyl chain and the 4-aminonaphthalimide fluorophore. The other end attached to the thermoresponsive block of poly(N-isopropylacrylamide) pNiPAm incorporates a coumarin fluorophore. The temperature-dependent self-assembly of the twofold fluorescently labeled copolymer is studied in pure aqueous solution as well as in an o/w microemulsion by several techniques including turbidimetry, dynamic light scattering (DLS), and fluorescence spectroscopy. It is compared to the behaviors of the analogous twofold-labeled pDMAm and pNiPAm homopolymer references. The findings indicate that the block copolymer behaves as a polymeric surfactant at low temperatures, with one relatively small hydrophobic end block and an extended hydrophilic chain forming "hairy micelles". At elevated temperatures above the LCST phase transition of the pNiPAm block, however, the copolymer behaves as an associative telechelic polymer with two nonsymmetrical hydrophobic end blocks, which do not mix. Thus, instead of a network of bridged "flower micelles", large dynamic aggregates are formed. These are connected alternatingly by the original micellar cores as well as by clusters of the collapsed pNiPAm blocks. This type of structure is even more favored in the o/w microemulsion than in pure aqueous solution, as the microemulsion droplets constitute an attractive anchoring point for the hydrophobic dodecyl sticker but not for the collapsed pNiPAm chains.

3.
Biomacromolecules ; 23(3): 1242-1250, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35176851

RESUMO

We studied the directed self-assembly of two types of complementary single-stranded DNA (ssDNA) strands [i.e., poly(dA) and poly(dT)] into more complex, organized, and percolating networks in dilute solutions and at surfaces. Understanding ssDNA self-assembly into 2D networks on surfaces is important for the use of such networks in the fabrication of well-defined nanotechnological devices, as, for instance, required in nanoelectronics or for biosensing. To control the formation of 2D networks on surfaces, it is important to know whether DNA assemblies are formed already in dilute solutions or only during the drying/immobilization process at the surface, where the concentration automatically increases. Fluorescence cross-correlation spectroscopy clearly shows the presence of larger DNA complexes in mixed poly(dA) and poly(dT) solutions already at very low DNA concentrations (<1 nM), that is, well below the overlap concentration. Here, we describe for the first time such supramolecular complexes in solution and how their structure depends on the ssDNA length and concentration and ionic strength. Hence, future attempts to control such networks should also focus on network precursors in solution and not only on their immobilization on surfaces.


Assuntos
DNA de Cadeia Simples , DNA , DNA/química , Concentração Osmolar , Poli A , Espectrometria de Fluorescência
4.
Biophys J ; 120(3): 463-475, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33421414

RESUMO

A combined experimental and theoretical method to simultaneously determine diffusivity and free-energy profiles of particles that penetrate into inhomogeneous hydrogel systems is presented. As the only input, arbitrarily normalized concentration profiles from fluorescence intensity data of labeled tracer particles for different penetration times are needed. The method is applied to dextran molecules of varying size that penetrate into hydrogels of polyethylene-glycol chains with different lengths that are covalently cross-linked by hyperbranched polyglycerol hubs. Extracted dextran bulk diffusivities agree well with fluorescence correlation spectroscopy data obtained separately. Empirical scaling laws for dextran diffusivities and free energies inside the hydrogel are identified as a function of the dextran mass. An elastic free-volume model that includes dextran as well as polyethylene-glycol linker flexibility quantitively describes the repulsive dextran-hydrogel interaction free energy, which is of steric origin, and furthermore suggests that the hydrogel mesh-size distribution is rather broad and particle penetration is dominated by large hydrogel pores. Particle penetration into hydrogels for steric particle-hydrogel interactions is thus suggested to be governed by an elastic size-filtering mechanism that involves the tail of the hydrogel pore-size distribution.


Assuntos
Hidrogéis , Polietilenoglicóis , Dextranos , Tamanho da Partícula
5.
Langmuir ; 37(45): 13235-13243, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34735164

RESUMO

Using CO2 as a resource in the production of materials is a viable alternative to conventional, petroleum-based raw materials and therefore offers great potential for more sustainable chemistry. This study presents a detailed structural characterization of aggregates of nonionic dodecyl surfactants with different amounts of CO2 substituting ethylene oxide (EO) in the head group. The micellar structure was characterized as a function of concentration and temperature by dynamic and static light scattering and, in further detail, by small-angle neutron scattering (SANS). The influence of the CO2 unit in the hydrophilic EO group is systematically compared to the incorporation of propylene oxide (PO) and propiolactone (PL). The surfactants with carbonate groups in their head groups form ellipsoidal micelles in an aqueous solution similar to conventional nonionic surfactants, becoming bigger with increasing CO2 content. In contrast, the incorporation of PO units hardly alters the behavior, while the incorporation of a PL unit has an effect comparable to the CO2 unit. The analysis of the SANS data shows decreasing hydration with increasing CO2 and PL content. By increasing the temperature, a typical sphere-rod transition is observed, where CO2 surfactants show a much higher elongation with increasing temperature, which is correlated with the reduced cloud point and a lower extent of head group hydration. Our findings demonstrate that CO2-containing surface-active compounds are an interesting, potentially "greener" alternative to conventional nonionic surfactants.

6.
Langmuir ; 36(48): 14811-14818, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33222439

RESUMO

The surface freezing transition of a mixed adsorbed film containing cetyltrimethylammonium chloride (CTAC) and n-hexadecanol (C16OH) was utilized at the dodecane-water interface to control the stability of oil-in-water (O/W) emulsions. The corresponding surface frozen and surface liquid mixed adsorbed films were characterized using interfacial tensiometry and X-ray reflectometry. The emulsion samples prepared in the temperature range of the surface frozen and surface liquid phases showed a clear difference in their stability: the emulsion volume decreased continuously right after the emulsification in the surface liquid region, while it remained constant or decreased at a much slower rate in the surface frozen region. Compared to the previously examined CTAC-tetradecane mixed adsorbed film, the surface freezing temperature increased from 9.5 to 25.0 °C due to the better chain matching between CTAC and C16OH and higher surface activity of C16OH. This then renders such systems much more attractive for practical applications.

7.
J Phys Chem Lett ; 7(10): 1816-20, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27124392

RESUMO

Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

8.
Colloid Polym Sci ; 293(11): 3381-3391, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26617429

RESUMO

The adsorption of lysozyme and ß-lactoglobulin onto silica nanoparticles (diameter 21 nm) was studied in the pH range 2-11 at three different ionic strengths. Since the two proteins have a widely different isoelectric point (pI), electrostatic interactions with the negative silica surface lead to a different dependence of adsorption on pH. For lysozyme (pI ≈ 11), the adsorption level increases with pH and reaches a value corresponding to about two close-packed monolayers at pH = pI. In the multilayer adsorption region near pI, added electrolyte causes a decrease in adsorption, which is attributed to the screening of attractive interactions between protein molecules in the first and second adsorbed layer. For ß-lactoglobulin (pI ≈ 5), a pronounced maximum of the adsorbed amount is found at pH 4 in the absence of salt. It is attributed to the adsorption of oligomers of the protein that exist in the solution at this pH. An inversion in the influence of salt on the adsorbed amount occurs at pH > pI, where the protein and the surface are both negatively charged. This inversion is attributed to the screening of the repulsive protein-surface and protein-protein interactions. The adsorption isotherms were analyzed with the Guggenheim-Anderson-De Boer (GAB) model, which allows for two adsorption states (strongly and weakly bound protein).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA