Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 37(21): 3950-3952, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34081107

RESUMO

SUMMARY: The PDBe aggregated API is an open-access and open-source RESTful API that provides programmatic access to a wealth of macromolecular structural data and their functional and biophysical annotations through 80+ API endpoints. The API is powered by the PDBe graph database (https://pdbe.org/graph-schema), an open-access integrative knowledge graph that can be used as a discovery tool to answer complex biological questions. AVAILABILITY AND IMPLEMENTATION: The PDBe aggregated API provides up-to-date access to the PDBe graph database, which has weekly releases with the latest data from the Protein Data Bank, integrated with updated annotations from UniProt, Pfam, CATH, SCOP and the PDBe-KB partner resources. The complete list of all the available API endpoints and their descriptions are available at https://pdbe.org/graph-api. The source code of the Python 3.6+ API application is publicly available at https://gitlab.ebi.ac.uk/pdbe-kb/services/pdbe-graph-api. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Reconhecimento Automatizado de Padrão , Software , Estrutura Molecular , Bases de Dados de Proteínas , Conformação Proteica
2.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31691821

RESUMO

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Assuntos
Bases de Dados de Proteínas , Software , Análise por Conglomerados , Confiabilidade dos Dados , Europa (Continente) , Conformação Proteica , Interface Usuário-Computador
3.
BMC Bioinformatics ; 22(1): 383, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301175

RESUMO

BACKGROUND: Biomacromolecular structural data outgrew the legacy Protein Data Bank (PDB) format which the scientific community relied on for decades, yet the use of its successor PDBx/Macromolecular Crystallographic Information File format (PDBx/mmCIF) is still not widespread. Perhaps one of the reasons is the availability of easy to use tools that only support the legacy format, but also the inherent difficulties of processing mmCIF files correctly, given the number of edge cases that make efficient parsing problematic. Nevertheless, to fully exploit macromolecular structure data and their associated annotations such as multiscale structures from integrative/hybrid methods or large macromolecular complexes determined using traditional methods, it is necessary to fully adopt the new format as soon as possible. RESULTS: To this end, we developed PDBeCIF, an open-source Python project for manipulating mmCIF and CIF files. It is part of the official list of mmCIF parsers recorded by the wwPDB and is heavily employed in the processes of the Protein Data Bank in Europe. The package is freely available both from the PyPI repository ( http://pypi.org/project/pdbecif ) and from GitHub ( https://github.com/pdbeurope/pdbecif ) along with rich documentation and many ready-to-use examples. CONCLUSIONS: PDBeCIF is an efficient and lightweight Python 2.6+/3+ package with no external dependencies. It can be readily integrated with 3rd party libraries as well as adopted for broad scientific analyses.


Assuntos
Software , Bases de Dados de Proteínas , Europa (Continente) , Substâncias Macromoleculares , Estrutura Molecular
4.
Bioinformatics ; 35(18): 3510-3511, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30759194

RESUMO

MOTIVATION: Cofactors are essential for many enzyme reactions. The Protein Data Bank (PDB) contains >67 000 entries containing enzyme structures, many with bound cofactor or cofactor-like molecules. This work aims to identify and categorize these small molecules in the PDB and make it easier to find them. RESULTS: The Protein Data Bank in Europe (PDBe; pdbe.org) has implemented a pipeline to identify enzyme cofactor and cofactor-like molecules, which are now part of the PDBe weekly release process. AVAILABILITY AND IMPLEMENTATION: Information is made available on the individual PDBe entry pages at pdbe.org and programmatically through the PDBe REST API (pdbe.org/api). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Dados de Proteínas , Coenzimas , Europa (Continente) , Conformação Proteica
5.
Nucleic Acids Res ; 46(D1): D399-D405, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29036719

RESUMO

ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a database providing information about the positions, geometry and physicochemical properties of channels (pores and tunnels) found within biomacromolecular structures deposited in the Protein Data Bank. Channels were deposited from two sources; from literature using manual deposition and from a software tool automatically detecting tunnels leading to the enzymatic active sites and selected cofactors, and transmembrane pores. The database stores information about geometrical features (e.g. length and radius profile along a channel) and physicochemical properties involving polarity, hydrophobicity, hydropathy, charge and mutability. The stored data are interlinked with available UniProt annotation data mapping known mutation effects to channel-lining residues. All structures with channels are displayed in a clear interactive manner, further facilitating data manipulation and interpretation. As such, ChannelsDB provides an invaluable resource for research related to deciphering the biological function of biomacromolecular channels.


Assuntos
Aminoácidos/química , Citocromo P-450 CYP2D6/química , Bases de Dados de Proteínas , Canais Iônicos/química , Poro Nuclear/química , Software , Aminoácidos/metabolismo , Animais , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Células Eucarióticas/citologia , Células Eucarióticas/enzimologia , Expressão Gênica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/genética , Canais Iônicos/metabolismo , Mutação , Poro Nuclear/genética , Poro Nuclear/metabolismo , Células Procarióticas/citologia , Células Procarióticas/enzimologia , Eletricidade Estática
6.
Nucleic Acids Res ; 46(W1): W368-W373, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29718451

RESUMO

MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.


Assuntos
Biologia Computacional , Internet , Conformação Proteica , Software , Modelos Moleculares
7.
Nucleic Acids Res ; 43(W1): W383-8, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26013810

RESUMO

Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.


Assuntos
Bases de Dados de Proteínas , Conformação Molecular , Software , Sítios de Ligação , Internet , Lectinas/química , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Proteica , Dedos de Zinco
8.
Nucleic Acids Res ; 43(Database issue): D369-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392418

RESUMO

Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Aminoácidos/química , Internet , Ligantes , Modelos Moleculares , Anotação de Sequência Molecular , Conformação Proteica , Reprodutibilidade dos Testes
9.
Nucleic Acids Res ; 42(Web Server issue): W227-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24848013

RESUMO

Structure validation has become a major issue in the structural biology community, and an essential step is checking the ligand structure. This paper introduces MotiveValidator, a web-based application for the validation of ligands and residues in PDB or PDBx/mmCIF format files provided by the user. Specifically, MotiveValidator is able to evaluate in a straightforward manner whether the ligand or residue being studied has a correct annotation (3-letter code), i.e. if it has the same topology and stereochemistry as the model ligand or residue with this annotation. If not, MotiveValidator explicitly describes the differences. MotiveValidator offers a user-friendly, interactive and platform-independent environment for validating structures obtained by any type of experiment. The results of the validation are presented in both tabular and graphical form, facilitating their interpretation. MotiveValidator can process thousands of ligands or residues in a single validation run that takes no more than a few minutes. MotiveValidator can be used for testing single structures, or the analysis of large sets of ligands or fragments prepared for binding site analysis, docking or virtual screening. MotiveValidator is freely available via the Internet at http://ncbr.muni.cz/MotiveValidator.


Assuntos
Substâncias Macromoleculares/química , Software , Acetilglucosamina/química , Sítios de Ligação , Ácido Cólico/química , Efrina-B3/química , Glicoproteínas/química , Internet , Ligantes , Proteínas/química
10.
Molecules ; 21(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27763518

RESUMO

The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.


Assuntos
Química Farmacêutica/métodos , Proteínas/química , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Epigênese Genética , Relação Estrutura-Atividade , Biologia de Sistemas
12.
BMC Bioinformatics ; 15: 379, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25403510

RESUMO

BACKGROUND: Enzyme active sites can be connected to the exterior environment by one or more channels passing through the protein. Despite our current knowledge of enzyme structure and function, surprisingly little is known about how often channels are present or about any structural features such channels may have in common. RESULTS: Here, we analyze the long channels (i.e. >15 Å) leading to the active sites of 4,306 enzyme structures. We find that over 64% of enzymes contain two or more long channels, their typical length being 28 Å. We show that amino acid compositions of the channel significantly differ both to the composition of the active site, surface and interior of the protein. CONCLUSIONS: The majority of enzymes have buried active sites accessible via a network of access channels. This indicates that enzymes tend to have buried active sites, with channels controlling access to, and egress from, them, and that suggests channels may play a key role in helping determine enzyme substrate.


Assuntos
Aminoácidos/química , Enzimas/química , Canais Iônicos/fisiologia , Aminoácidos/genética , Domínio Catalítico , Enzimas/genética , Humanos , Modelos Moleculares , Conformação Proteica
13.
J Cheminform ; 15(1): 117, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042830

RESUMO

While the Protein Data Bank (PDB) contains a wealth of structural information on ligands bound to macromolecules, their analysis can be challenging due to the large amount and diversity of data. Here, we present PDBe CCDUtils, a versatile toolkit for processing and analysing small molecules from the PDB in PDBx/mmCIF format. PDBe CCDUtils provides streamlined access to all the metadata for small molecules in the PDB and offers a set of convenient methods to compute various properties using RDKit, such as 2D depictions, 3D conformers, physicochemical properties, scaffolds, common fragments, and cross-references to small molecule databases using UniChem. The toolkit also provides methods for identifying all the covalently attached chemical components in a macromolecular structure and calculating similarity among small molecules. By providing a broad range of functionality, PDBe CCDUtils caters to the needs of researchers in cheminformatics, structural biology, bioinformatics and computational chemistry.

14.
FEBS J ; 289(19): 5875-5890, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34437766

RESUMO

Enzymes play essential roles in all life processes and are used extensively in the biomedical and biotechnological fields. However, enzyme-related information is spread across multiple resources making its retrieval time-consuming. In response to this challenge, the Enzyme Portal has been established to facilitate enzyme research, by providing a freely available hub where researchers can easily find and explore enzyme-related information. It integrates relevant enzyme data for a wide range of species from various resources such as UniProtKB, PDBe and ChEMBL. Here, we describe what type of enzyme-related data the Enzyme Portal provides, how the information is organized and, by show-casing two potential use cases, how to access and retrieve it.


Assuntos
Enzimas , Bases de Conhecimento
15.
Protein Sci ; 31(10): e4439, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173162

RESUMO

The archiving and dissemination of protein and nucleic acid structures as well as their structural, functional and biophysical annotations is an essential task that enables the broader scientific community to conduct impactful research in multiple fields of the life sciences. The Protein Data Bank in Europe (PDBe; pdbe.org) team develops and maintains several databases and web services to address this fundamental need. From data archiving as a member of the Worldwide PDB consortium (wwPDB; wwpdb.org), to the PDBe Knowledge Base (PDBe-KB; pdbekb.org), we provide data, data-access mechanisms, and visualizations that facilitate basic and applied research and education across the life sciences. Here, we provide an overview of the structural data and annotations that we integrate and make freely available. We describe the web services and data visualization tools we offer, and provide information on how to effectively use or even further develop them. Finally, we discuss the direction of our data services, and how we aim to tackle new challenges that arise from the recent, unprecedented advances in the field of structure determination and protein structure modeling.


Assuntos
Ácidos Nucleicos , Proteínas , Bases de Dados de Proteínas , Europa (Continente) , Conformação Proteica , Proteínas/química
16.
Methods Mol Biol ; 2112: 1-13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006274

RESUMO

LiteMol suite is an innovative solution that enables near-instant delivery of model and experimental biomacromolecular structural data, providing users with an interactive and responsive experience in all modern web browsers and mobile devices. LiteMol suite is a combination of data delivery services (CoordinateServer and DensityServer), compression format (BinaryCIF), and a molecular viewer (LiteMol Viewer). The LiteMol suite is integrated into Protein Data Bank in Europe (PDBe) and other life science web applications (e.g., UniProt, Ensemble, SIB, and CNRS services), it is freely available at https://litemol.org , and its source code is available via GitHub. LiteMol suite provides advanced functionality (annotations and their visualization, powerful selection features), and this chapter will describe their use for visual inspection of protein structures.


Assuntos
Conformação Proteica , Proteínas/química , Bases de Dados de Proteínas , Europa (Continente) , Internet , Software , Interface Usuário-Computador , Navegador
17.
Protein Sci ; 27(1): 129-134, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875543

RESUMO

PDBsum is a web server providing structural information on the entries in the Protein Data Bank (PDB). The analyses are primarily image-based and include protein secondary structure, protein-ligand and protein-DNA interactions, PROCHECK analyses of structural quality, and many others. The 3D structures can be viewed interactively in RasMol, PyMOL, and a JavaScript viewer called 3Dmol.js. Users can upload their own PDB files and obtain a set of password-protected PDBsum analyses for each. The server is freely accessible to all at: http://www.ebi.ac.uk/pdbsum.


Assuntos
Bases de Dados de Proteínas , Imageamento Tridimensional , Internet , Modelos Moleculares , Estrutura Secundária de Proteína , Software
18.
PLoS One ; 11(11): e0166191, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812196

RESUMO

Yellow-related proteins (YRPs) present in sand fly saliva act as affinity binders of bioamines, and help the fly to complete a bloodmeal by scavenging the physiological signals of damaged cells. They are also the main antigens in sand fly saliva and their recombinant form is used as a marker of host exposure to sand flies. Moreover, several salivary proteins and plasmids coding these proteins induce strong immune response in hosts bitten by sand flies and are being used to design protecting vaccines against Leishmania parasites. In this study, thirty two 3D models of different yellow-related proteins from thirteen sand fly species of two genera were constructed based on the known protein structure from Lutzomyia longipalpis. We also studied evolutionary relationships among species based on protein sequences as well as sequence and structural variability of their ligand-binding site. All of these 33 sand fly YRPs shared a similar structure, including a unique tunnel that connects the ligand-binding site with the solvent by two independent paths. However, intraspecific modifications found among these proteins affects the charges of the entrances to the tunnel, the length of the tunnel and its hydrophobicity. We suggest that these structural and sequential differences influence the ligand-binding abilities of these proteins and provide sand flies with a greater number of YRP paralogs with more nuanced answers to bioamines. All these characteristics allow us to better evaluate these proteins with respect to their potential use as part of anti-Leishmania vaccines or as an antigen to measure host exposure to sand flies.


Assuntos
Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Psychodidae , Sequência de Aminoácidos , Animais , Sítios de Ligação , Glicosilação , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Filogenia , Conformação Proteica , Saliva/metabolismo , Eletricidade Estática
19.
J Cheminform ; 7: 50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500704

RESUMO

BACKGROUND: Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. RESULTS: This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. CONCLUSIONS: Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC.

20.
J Cheminform ; 5(1): 39, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23953065

RESUMO

BACKGROUND: Channels and pores in biomacromolecules (proteins, nucleic acids and their complexes) play significant biological roles, e.g., in molecular recognition and enzyme substrate specificity. RESULTS: We present an advanced software tool entitled MOLE 2.0, which has been designed to analyze molecular channels and pores. Benchmark tests against other available software tools showed that MOLE 2.0 is by comparison quicker, more robust and more versatile. As a new feature, MOLE 2.0 estimates physicochemical properties of the identified channels, i.e., hydropathy, hydrophobicity, polarity, charge, and mutability. We also assessed the variability in physicochemical properties of eighty X-ray structures of two members of the cytochrome P450 superfamily. CONCLUSION: Estimated physicochemical properties of the identified channels in the selected biomacromolecules corresponded well with the known functions of the respective channels. Thus, the predicted physicochemical properties may provide useful information about the potential functions of identified channels. The MOLE 2.0 software is available at http://mole.chemi.muni.cz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA