RESUMO
The complement is a conserved cascade that plays a central role in the innate immune system. To maintain a delicate equilibrium preventing excessive complement activation, complement inhibitors are essential. One of the major fluid-phase complement inhibitors is C4b-binding protein (C4BP). Human C4BP is a macromolecular glycoprotein composed of two distinct subunits, C4BPα and C4BPß. These associate with vitamin K-dependent protein S (ProS) forming an ensemble of co-occurring higher-order structures. Here, we characterize these C4BP assemblies. We resolve and quantify isoforms of purified human serum C4BP using distinct single-particle detection techniques: charge detection mass spectrometry, and mass photometry accompanied by high-speed atomic force microscopy. Combining cross-linking mass spectrometry, glycoproteomics, and structural modeling, we report comprehensive glycoproteoform profiles and full-length structural models of the endogenous C4BP assemblies, expanding knowledge of this key complement inhibitor's structure and composition. Finally, we reveal that an increased C4BPα to C4BPß ratio coincides with elevated C-reactive protein levels in patient plasma samples. This observation highlights C4BP isoform variation and affirms a distinct role of co-occurring C4BP assemblies upon acute phase inflammation.
Assuntos
Proteína de Ligação ao Complemento C4b , Humanos , Proteína C-Reativa/metabolismo , Proteína C-Reativa/química , Proteína de Ligação ao Complemento C4b/metabolismo , Espectrometria de Massas , Microscopia de Força Atômica , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/sangueRESUMO
Complement activation through antibody-antigen complexes is crucial in various pathophysiological processes and utilized in immunotherapies to eliminate infectious agents, regulatory immune cells, or cancer cells. The tertiary structures of the four IgG antibody subclasses are largely comparable, with the most prominent difference being the hinge regions connecting the Fab and Fc domains, providing them with unique structural flexibility. Complement recruitment and activation depend strongly on IgG subclass, which is commonly rationalized by differences in hinge flexibility and the respective affinities for C1, the first component of the classical complement pathway. However, a unifying mechanism of how these different IgG subclass properties combine to modulate C1 activation has not yet been proposed. We here demonstrate that complement activation is determined by their varying ability to form IgG oligomers on antigenic surfaces large enough to multivalently bind and activate C1. We directly visualize the resulting IgG oligomer structures and characterize their distribution by means of high-speed atomic force microscopy, quantify their complement recruitment efficiency from quartz crystal microbalance experiments, and characterize their ability to activate complement on tumor cell lines as well as in vesicle-based complement lysis assays. We present a mechanistic model of the multivalent interactions that govern C1 binding to IgG oligomers and use it to extract kinetic rate constants from real-time interaction data from which we further calculate equilibrium dissociation constants. Together, we provide a comprehensive view on the parameters that govern complement activation by the different IgG subclasses, which may inform the design of future antibody therapies.
Assuntos
Ativação do Complemento , Imunoglobulina G , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Humanos , Ativação do Complemento/imunologia , Ligação Proteica , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Antígenos/imunologia , Antígenos/metabolismo , Complemento C1/imunologia , Complemento C1/metabolismo , Microscopia de Força Atômica , Multimerização Proteica , Linhagem Celular TumoralRESUMO
At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (ß2m, encoded by B2M), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single-molecule co-tracking. We identify non-covalent MHC-I FHC dimers, with dimerization mediated by the α3 domain, as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single-molecule colocalization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to that seen for ß2m.
Assuntos
Antígenos de Histocompatibilidade Classe I , Microglobulina beta-2 , Animais , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Ligação Proteica , Microglobulina beta-2/metabolismoRESUMO
T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.
Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , DNA/imunologia , Complexo Principal de Histocompatibilidade/genética , Receptores de Antígenos de Linfócitos T/química , Animais , Células Apresentadoras de Antígenos/citologia , Linfócitos T CD4-Positivos/citologia , DNA/química , DNA/genética , Expressão Gênica , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ativação Linfocitária , Camundongos , Conformação de Ácido Nucleico , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Cultura Primária de Células , Ligação Proteica , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/metabolismo , Baço/citologia , Baço/imunologiaRESUMO
Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.
Assuntos
Ativação do Complemento , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Multimerização Proteica , Proteína Estafilocócica A/metabolismo , Sítios de Ligação , Células Cultivadas , Humanos , Fagócitos/imunologia , Fagocitose , Ligação Proteica , Staphylococcus aureus/imunologiaRESUMO
Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2 In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.
Assuntos
Membrana Celular/metabolismo , Complemento C1q/metabolismo , Complemento C1r/metabolismo , Complemento C1s/metabolismo , Imunoglobulina G/metabolismo , Ativação do Complemento , Humanos , Microscopia de Força Atômica , Mutação/genética , Fagocitose , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Staphylococcus aureus/imunologiaRESUMO
Extracellular vesicles (EVs) play a key role in cell-cell communication and thus have great potential to be utilized as therapeutic agents and diagnostic tools. In this study, we implemented single-molecule microscopy techniques as a toolbox for a comprehensive characterization as well as measurement of the cellular uptake of HEK293T cell-derived EVs (eGFP-labeled) in HeLa cells. A combination of fluorescence and atomic force microscopy revealed a fraction of 68% fluorescently labeled EVs with an average size of â¼45 nm. Two-color single-molecule fluorescence microscopy analysis elucidated the 3D dynamics of EVs entering HeLa cells. 3D colocalization analysis of two-color direct stochastic optical reconstruction microscopy (dSTORM) images revealed that 25% of EVs that experienced uptake colocalized with transferrin, which has been linked to early recycling of endosomes and clathrin-mediated endocytosis. The localization analysis was combined with stepwise photobleaching, providing a comparison of protein aggregation outside and inside the cells.
Assuntos
Vesículas Extracelulares , Imagem Individual de Molécula , Humanos , Células HeLa , Células HEK293 , Vesículas Extracelulares/metabolismo , Microscopia de Força AtômicaRESUMO
The fundamental task of lipoprotein particles is extracellular transport of cholesterol, lipids, and fatty acids. Besides, cholesterol-rich apoB-containing lipoprotein particles (i.e., low density lipoprotein LDL) are key players in progression of atherosclerotic cardiovascular disease and are associated with familial hypercholesterolemia (FH). So far, lipoprotein particle binding to the cell membrane and subsequent cargo transfer is directly linked to the lipoprotein receptors on the target cell surface. However, our observations showed that lipoprotein particle cargo transport takes place even in the absence of the receptor. This finding suggests that an alternative mechanism for lipoprotein-particle/membrane interaction, besides the receptor-mediated one, exists. Here, we combined several complementary biophysical techniques to obtain a comprehensive view on the nonreceptor mediated LDL-particle/membrane. We applied a combination of atomic force and single-molecule-sensitive fluorescence microscopy (AFM and SMFM) to investigate the LDL particle interaction with membranes of increasing complexity. We observed direct transfer of fluorescently labeled amphiphilic lipid molecules from LDL particles into the pure lipid bilayer. We further confirmed cargo transfer by fluorescence cross-correlation spectroscopy (FCCS) and spectral imaging of environment-sensitive probes. Moreover, the integration of the LDL particle into the membranes was directly visualized by high-speed atomic force microscopy (HS-AFM) and cryo-electron microscopy (cryo-EM). Overall, our data show that lipoprotein particles are able to incorporate into lipid membranes upon contact to transfer their cargo in the absence of specific receptors.
Assuntos
Membrana Celular/ultraestrutura , Doença da Artéria Coronariana/patologia , Hiperlipoproteinemia Tipo II/metabolismo , Lipoproteínas LDL/química , Apolipoproteínas B/química , Fenômenos Biofísicos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Doença da Artéria Coronariana/metabolismo , Microscopia Crioeletrônica , Progressão da Doença , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Hiperlipoproteinemia Tipo II/patologia , Bicamadas Lipídicas/química , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/ultraestrutura , Microscopia de Força AtômicaRESUMO
IgG antibodies play a central role in protection against pathogens by their ability to alert and activate the innate immune system. Here, we show that IgGs assemble into oligomers on antigenic surfaces through an ordered, Fc domain-mediated process that can be modulated by protein engineering. Using high-speed atomic force microscopy, we unraveled the molecular events of IgG oligomer formation on surfaces. IgG molecules were recruited from solution although assembly of monovalently binding molecules also occurred through lateral diffusion. Monomers were observed to assemble into hexamers with all intermediates detected, but in which only hexamers bound C1. Functional characterization of oligomers on cells also demonstrated that C1 binding to IgG hexamers was a prerequisite for maximal activation, whereas tetramers, trimers, and dimers were mostly inactive. We present a dynamic IgG oligomerization model, which provides a framework for exploiting the macromolecular assembly of IgGs on surfaces for tool, immunotherapy, and vaccine design.
Assuntos
Ativação do Complemento , Complemento C1/química , Imunoglobulina G/química , Multimerização Proteica , Complemento C1/imunologia , Humanos , Imunoglobulina G/imunologiaRESUMO
The flexibilities of extracellular loops determine ligand binding and activation of membrane receptors. Arising from fluctuations in inter- and intraproteinaceous interactions, flexibility manifests in thermal motion. Here we demonstrate that quantitative flexibility values can be extracted from directly imaging the thermal motion of membrane protein moieties using high-speed atomic force microscopy (HS-AFM). Stiffness maps of the main periplasmic loops of single reconstituted water channels (AqpZ, GlpF) revealed the spatial and temporal organization of loop-stabilizing intraproteinaceous H-bonds and salt bridges.
Assuntos
Aquaporinas/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Microscopia de Força Atômica/métodos , Estrutura Secundária de ProteínaRESUMO
Antibody-dependent complement activation plays a key role in the natural human immune response to infections. Currently, the understanding of which antibody-antigen combinations drive a potent complement response on bacteria is limited. Here, we develop an antigen-agnostic approach to stain and single-cell sort human IgG memory B cells recognizing intact bacterial cells, keeping surface antigens in their natural context. With this method we successfully identified 29 antibodies against K. pneumoniae, a dominant cause of hospital-acquired infections with increasing antibiotic resistance. Combining genetic tools and functional analyses, we reveal that the capacity of antibodies to activate complement on K. pneumoniae critically depends on their antigenic target. Furthermore, we find that antibody combinations can synergistically activate complement on K. pneumoniae by strengthening each other's binding in an Fc-independent manner. Understanding the molecular basis of effective complement activation by antibody combinations to mimic a polyclonal response could accelerate the development of antibody-based therapies against problematic infections.
Assuntos
Anticorpos Antibacterianos , Ativação do Complemento , Imunoglobulina G , Klebsiella pneumoniae , Humanos , Ativação do Complemento/imunologia , Anticorpos Antibacterianos/imunologia , Klebsiella pneumoniae/imunologia , Imunoglobulina G/imunologia , Linfócitos B/imunologia , Células B de Memória/imunologiaRESUMO
Interest in mesenchymal stem cell derived extracellular vesicles (MSC-EVs) as therapeutic agents has dramatically increased over the last decade. Current approaches to the characterization and quality control of EV-based therapeutics include particle tracking techniques, Western blotting, and advanced cytometry, but standardized methods are lacking. In this study, we established and verified quartz crystal microbalance (QCM) as highly sensitive label-free immunosensing technique for characterizing clinically approved umbilical cord MSC-EVs enriched by tangential flow filtration and ultracentrifugation. Using QCM in conjunction with common characterization methods, we were able to specifically detect EVs via EV (CD9, CD63, CD81) and MSC (CD44, CD49e, CD73) markers. Furthermore, analysis of QCM dissipation versus frequency allowed us to quantitatively determine the ratio of marker-specific EVs versus non-vesicular particles (NVPs) - a parameter that cannot be obtained by any other technique so far. Additionally, we characterized the topography and elasticity of these EVs by atomic force microscopy (AFM), enabling us to distinguish between EVs and NVPs in our EV preparations. This measurement modality makes it possible to identify EV sub-fractions, discriminate between EVs and NVPs, and to characterize EV surface proteins, all with minimal sample preparation and using label-free measurement devices with low barriers of entry for labs looking to widen their spectrum of characterization techniques. Our combination of QCM with impedance measurement (QCM-I) and AFM measurements provides a robust multi-marker approach to the characterization of clinically approved EV therapeutics and opens the door to improved quality control.
Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microscopia de Força Atômica/métodos , HumanosRESUMO
Translocation of many secretory proteins through the bacterial plasma membrane is facilitated by a complex of the SecYEG channel with the motor protein SecA. The ATP-free complex is unstable in detergent, raising the question how SecA may perform several rounds of ATP hydrolysis without being released from the membrane embedded SecYEG. Here we show that dual recognition of (i) SecYEG and (ii) vicinal acidic lipids confers an apparent nanomolar affinity. High-speed atomic force microscopy visualizes the complexes between monomeric SecA and SecYEG as being stable for tens of seconds. These long-lasting events and complementary shorter ones both give rise to single ion channel openings of equal duration. Furthermore, luminescence resonance energy transfer reveals two conformations of the SecYEG-SecA complex that differ in the protrusion depth of SecA's two-helix finger into SecYEG's aqueous channel. Such movement of the finger is in line with the power stroke mechanism of protein translocation.
RESUMO
Activation of membrane receptors through clustering is a common mechanism found in various biological systems. Spatial proximity of receptors may be transduced across the membrane to initiate signaling pathways or alternatively be recognized by peripheral proteins or immune cells to trigger external effector functions. Here we show how specific immunoglobulin G (IgG) binding induces clustering of monomeric target molecules in lipid membranes through Fc-Fc interactions. We visualize and characterize the dynamic IgG oligomerization process and the molecular interactions involved using high-speed atomic force microscopy, single-molecule force spectroscopy, and quartz crystal microbalance experiments. We found that the Fc-Fc interaction strength is precisely tuned to be weak enough to prevent IgG oligomerization in solution at physiological titers, but enabling IgG oligomerization when Fabs additionally bind to their cognate surface epitopes, a mechanism that ultimately targets IgG-mediated effector functions such as classical complement activation to antigenic membranes.
Assuntos
Antígenos/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Antígenos/química , Humanos , Fragmentos Fc das Imunoglobulinas/química , Microscopia de Força Atômica , Técnicas de Microbalança de Cristal de QuartzoRESUMO
Native-protein nanolithography is combined with topography and recognition imaging to synergistically use AFM tips to write and image nanoscale protein patterns on a surface (see picture). The approach is validated with different feedback modes, using surface-bound biotinylated bovine serum albumin (BSA) protein and AFM tips carrying streptavidin.
Assuntos
Microscopia de Força Atômica , Nanoestruturas/química , Soroalbumina Bovina/química , Animais , Biotinilação , Bovinos , Estreptavidina/química , Propriedades de SuperfícieRESUMO
Simultaneous topography and recognition imaging (TREC) allows for the investigation of receptor distributions on natural biological surfaces under physiological conditions. Based on atomic force microscopy (AFM) in combination with a cantilever tip carrying a ligand molecule, it enables us to sense topography and recognition of receptor molecules simultaneously with nanometre accuracy. In this study we introduce optimized handling conditions and investigate the physical properties of the cantilever-tip-sample ensemble, which is essential for the interpretation of the experimental data gained from this technique. In contrast to conventional AFM methods, TREC is based on a more sophisticated feedback loop, which enables us to discriminate topographical contributions from recognition events in the AFM cantilever motion. The features of this feedback loop were investigated through a detailed analysis of the topography and recognition data obtained on a model protein system. Single avidin molecules immobilized on a mica substrate were imaged with an AFM tip functionalized with a biotinylated IgG. A simple procedure for adjusting the optimal amplitude for TREC imaging is described by exploiting the sharp localization of the TREC signal within a small range of oscillation amplitudes. This procedure can also be used for proving the specificity of the detected receptor-ligand interactions. For understanding and eliminating topographical crosstalk in the recognition images we developed a simple theoretical model, which nicely explains its origin and its dependence on the excitation frequency.
Assuntos
Avidina/química , Aumento da Imagem/métodos , Imunoglobulina G/química , Micromanipulação/métodos , Microscopia de Força Atômica/métodos , Modelos Químicos , Nanotecnologia/métodos , Simulação por Computador , Técnicas de Sonda Molecular , Mapeamento de Interação de Proteínas/métodosRESUMO
The great physiological relevance of glycolipids is being increasingly recognized, and glycolipid interactions have been shown to be central to cell-cell recognition, neuronal plasticity, protein-ligand recognition, and other important processes. However, detailed molecular-level understanding of these processes remains to be fully resolved. Molecular dynamics simulations could reveal the details of the glycolipid interactions, but the results may be influenced by the choice of the employed force field. Here, we have compared the behavior and properties of GM1, a common, biologically important glycolipid, using the CHARMM36, OPLS, GROMOS, and Amber99-GLYCAM06 (in bilayers comprising SLIPIDS and LIPID14 lipids) force fields in bilayers comprising 1,2-dioleoyl-sn-glycero-3-phosphocholine lipids and compared the results to atomic force microscopy and fluorescence resonance energy transfer experiments. We found discrepancies within the GM1 behavior displayed between the investigated force fields. Based on a direct comparison with complementary experimental results derived from fluorescence and AFM measurements, we recommend using the Amber99-GLYCAM force field in bilayers comprising LIPID14 or SLIPIDS lipids followed by CHARMM36 and OPLS force fields in simulations. The GROMOS force field is not recommended for reproducing the properties of the GM1 head group.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Gangliosídeo G(M1)/química , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Teoria Quântica , Microscopia de Força Atômica , Conformação Molecular , Simulação de Dinâmica MolecularRESUMO
Native-protein nanolithography (NPNL) was used to fabricate stable bioactive arrays of viral receptor spots. The arrays were specific for the cognate virus and devoid of nonspecific protein and virus adsorption under physiologic conditions. The spot size ranged from 200 nm x 200 nm to 2 microm x 2 microm and up to 3 x 3 spots were arranged per array. With proper force adjustment in the patterning experiments, His(6)-tagged bovine serum albumin (BSA) molecules were selectively removed from the underlying self-assembled monolayer (SAM) while leaving the latter intact. Injection of His(6)-tagged very low density lipoprotein receptor (VLDLR-His(6)) constructs resulted in specific, oriented binding to the Ni(2+)-loaded bis-(nitrolotriacetic acid) (bis-NTA) groups to the re-exposed SAM areas. The arrays of viral receptors were used for the detection of human rhinovirus particles (serotype 2; HRV2) under native conditions by topographical imaging at high signal-to-noise ratio. The kinetic on-rate of the HRV2-VLDLR interaction was derived from the time-dependent binding of the virions to the VLDL receptor spots. No significant binding was observed for the major group virus HRV14 that uses the unrelated receptor ICAM-1.
Assuntos
Microscopia de Força Atômica/instrumentação , Nanotecnologia , Vírus/isolamento & purificação , Humanos , Cinética , Receptores Virais , Sensibilidade e EspecificidadeRESUMO
Biomaterial surface chemistry and nanoscale topography are important for many potential applications in medicine and biotechnology as they strongly influence cell function, adhesion and proliferation. In this work, we present periodic surface structures generated by linearly polarized KrF laser light (248 nm) on polystyrene (PS) foils. These structures have a periodicity of 200-430 nm and a depth of 30-100 nm, depending on the angle of incidence of the laser beam. The changes in surface topography and chemistry were analysed by atomic force microscopy (AFM), advancing water contact-angle measurements, Fourier-transform infrared spectroscopy using an attenuated total reflection device (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). We show that the surface laser modification results in a significantly enhanced adhesion and proliferation of human embryonic kidney cells (HEK-293) compared to the unmodified polymer foil. Furthermore, we report on the alignment of HEK-293 cells, Chinese hamster ovary (CHO-K1) cells and skeletal myoblasts along the direction of the structures. The results indicate that the presence of nanostructures on the substrates can guide cell alignment along definite directions, and more importantly, in our opinion, that this alignment is only observed when the periodicity is above a critical periodicity value that is cell-type specific.
Assuntos
Materiais Biocompatíveis/química , Rim/citologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Poliestirenos/química , Engenharia Tecidual/métodos , Animais , Células CHO , Adesão Celular , Técnicas de Cultura de Células/métodos , Linhagem Celular , Polaridade Celular , Proliferação de Células , Sobrevivência Celular , Cricetinae , Cricetulus , Humanos , Lasers , Teste de Materiais , Mioblastos , Periodicidade , Propriedades de SuperfícieRESUMO
Nanocrystalline diamond (NCD) films and nanoparticulate diamond powder (DP) are the two main representatives of diamond at the nanoscale. This study was designed to investigate the suitability of these biomaterials as cell growth supports and to determine surface characteristic properties best suited to cell attachment and proliferation. Surface topography, chemical termination and wetting properties of NCD- and DP-coated borosilicate glass substrates were correlated to attachment, proliferation and differentially regulated gene expression of human renal epithelial cells (HK-2 cell line) cultured on these surfaces. Hydrogen-terminated NCD (NCD-H) surfaces were shown to inhibit cell attachment, which indicates that the lack of functional polar groups prevents adherent cells from settling on a surface, whether nanostructured or not. In contrast to NCD-H, oxygen-terminated NCD (NCD-O) as well as DP surfaces demonstrated improved cell attachment, as compared to borosilicate glass, which is a commonly used material for cell growth supports. NCD-O not only revealed an increased cell attachment, but also a markedly increased proliferation rate. Finally, none of the investigated surface modifications appeared to cause adverse cellular reactions or markedly alter cellular phenotype.