Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(2): 1799-1807, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36471210

RESUMO

Phytocystatins are a type of proteinase inhibitor which are extensively studied for their specific inhibitory action against cysteine protease enzymes (CP) of insects and pathogens. Oryzacystatins (OC), a phytocystatin from rice inhibits CP in a reversible manner with its conserved tripartite wedge. OCs have important role in plant innate defense mechanism through phytohormonal signalling pathways. OC are induced in response to both biotic and abiotic stress conditions and are used to develop transgenic plants exhibiting resistance against stress conditions. In this review, we focus on the structure and mechanism of action of oryzacystatins, their possible role in plant physiology, biotic and abiotic stress tolerance mechanism in plants and their potential application strategies for future crop management studies.


Assuntos
Cistatinas , Cisteína Proteases , Cistatinas/química , Cistatinas/genética , Cistatinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico
2.
PLoS One ; 19(1): e0289215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241343

RESUMO

Insect-microbial symbiosis contributes positively to the physiology of the insect and diet is considered as one important factor determining microbial symbiosis. In this study, we have characterized the microbiota of cigarette beetle, Lasioderma serricorne (Fabricius) on different diets and phases. The beetles were reared on different diet sources (exposed phase) for six generations and were reverted to their natal source (reverted phase) and further maintained for six more generations. The bacterial diversity and richness were higher in the exposed phase and once reverted to the natal source, the microbial abundance has re-assembled according to the natal diet source. There was re-assemblage of microbial composition in accordance to the diet and the bacterial cells are able to establish and proliferate on reverting to their natal source. The bacterial composition of the beetle was mainly dynamic and not transient where the bacterial cells were maintained at low abundance and were re-established according to the diet source. Overall, we found that the microbiota of cigarette beetle to be dynamic and bacterial composition to re-assemble in a diet-specific manner. The study provides insights on diet associated microbial plasticity of cigarette beetle and a further comprehensive understanding on mechanisms involved in microbial plasticity will help develop novel pest management strategies for this invasive insect pest.


Assuntos
Besouros , Microbiota , Produtos do Tabaco , Animais , Besouros/fisiologia , Bactérias , Dieta
3.
J Agric Food Chem ; 72(29): 16378-16389, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38980661

RESUMO

Rice (Oryza sativaL.) is a crucial staple food crop globally, facing significant challenges from various pests that affect crop productivity and quality. Conventional pesticide usage has limitations, necessitating the development of sustainable pest management strategies. This study focuses on the expression, purification, and functional characterization of Oryzacystatin II (OC-II), a protein derived from O. sativaL. Indica rice, with the intent to evaluate its potential as a bioinsecticide against rice pests. The OC-II gene was expressed and purified, and purification confirmed its molecular weight (∼12 kDa) and protein sequence through LC-MS/MS analysis and Western blotting. The IC50 value of OC-II was calculated as 0.06 µM, and the inhibition was identified as a competitive inhibition. The protein exhibited efficient control of both pests at the nymph and adult stages, with lower probing marks observed on treated plants. The inhibition of cathepsin B enzyme activity in insects further confirmed the bioactivity of the OC-II protein. Molecular docking and molecular dynamics simulations provided insights into the interaction between the OC-II protein and cathepsin enzymes reported in BPH and WBPH. Further investigations can focus on optimizing production methods and exploring the specificity and efficacy of the OC-II protein against other crop pests to enhance its practical applications.


Assuntos
Inseticidas , Simulação de Acoplamento Molecular , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/química , Oryza/metabolismo , Animais , Inseticidas/química , Inseticidas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Controle Biológico de Vetores
4.
Mol Nutr Food Res ; 67(24): e2300450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37899300

RESUMO

Cognition is the mental processes and abilities involved in acquiring, storing, retrieving and using it for decision making. Cognitive decline due to aging, lifestyle factor, chronic health conditions, genetic, and environmental factors are rising global concern and propose a potential threat to the cognitive health. The nutritional imbalance has led to increase in cognitive disorders around the world. Millets can be a nutritional intervention for promoting cognitive health and preventing cognitive decline. Millets has abundant phenolic compounds, flavonoids, and antioxidants to protect against oxidative stress-induced cognitive impairment. Millets exert neuroprotective effects by modulating pathways involved in neuronal-survival, synaptic-plasticity, and release of brain-derived neurotrophic factor. Millets demonstrates anti-inflammatory properties by regulating inflammatory-pathways and suppressing cytokines associated with cognitive impairment. Millets maintain healthy gut microbiota by producing metabolites such as short-chain fatty acids, which influence brain function and cognition. However, further research is needed to elucidate the underlying mechanisms and on optimizing the proportion do exploit its potential. Implementing millet-based dietary strategies through public health initiatives and educational programs can be a practical approach to support cognitive health across populations. Harnessing the potential of millets as a nutritional intervention offers a promising avenue for promoting cognitive health and improving the quality of life.


Assuntos
Milhetes , Nootrópicos , Milhetes/genética , Qualidade de Vida , Cognição , Antioxidantes
5.
Heliyon ; 8(9): e10596, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36177231

RESUMO

Cardenolides, a group of cardiac glycosides are potent inhibitors of Na+/K+ ATPase pump in mammals, animals including insects. Some insects can circumvent the toxicity of cardenolides by mechanisms like target site resistance and metabolic resistance resulting in enhanced tolerance or adaptation. In this paper, we report an intriguing observation of a polyphagous feeder feeding gregariously on the leaves of Calotropis gigantea (L.) without any apparent adverse effect. No choice feeding assay showed higher larval biomass and reduced number of days to develop on C. gigantea leaves compared to Ricinus and banana. We found the activity of GST higher in C. gigantea fed larva and HR LC-MS analysis of Olepa sps. revealed the presence of glutathione-strophanthidin conjugate in larval body tissue. In silico molecular simulation results confirmed strong interaction between delta variant GST and glutathione-strophanthidin complex. The sequestration site and cost benefit of glutathione-strophanthidin sequestration in body tissues of Olepa sps. needs further investigation.

6.
Phytochemistry ; 186: 112728, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721793

RESUMO

Phytoprotease inhibitors (PI) are important defence compounds produced by plants against microbes and insect herbivory. Oryzacystatins (OCs) are a group of protease inhibitors from Oryza sativa L. that are specific against cysteine protease enzymes. This study revealed the evolutionary relationship of eleven different oryzacystatins from rice and their interaction with cysteine protease enzymes from brown planthopper (BPH) and striped stem borer (SSB). Three-dimensional structure of eleven different oryzacystatins and six cysteine protease enzymes were homologically modelled, and their interaction was analysed to explore the sequence heterogeneity, structural variability and functional significance. OC XI and OC V showed higher docking score and hydrogen bond interaction with all the six tested cysteine protease enzymes. N terminal glycine residue, central conserved QVVXG, C terminal AVVXXXPW regions are involved in interacting with the active site residue of protease enzymes. Substitution of N terminal glycine by any other residue in OC VI significantly reduced the interaction efficiency with cysteine proteases. In OC XI, glutamine in the fourth position of QVVXG showed higher interaction efficiency with all cysteine proteases than serine at the fourth amino acid position. N terminal glycine plays a vital role in OC XI for interacting with active sites of cysteine protease enzymes whereas, in the OC V central conserved region QVVSG and C terminal PW region plays a major part in the interaction. However, either N terminal or C terminal region along with the central conserved region of oryzacystatin is involved in mediating an efficient interaction with the active site residues of cysteine proteases. Molecular dynamic (MD) simulation study revealed the stability of the OC X1 - cathepsin O2 like and OC V - cathepsin F like complexes during a simulation for 20 ns. Insilico results of the present study predict the potential of oryzacystatins interaction with cysteine protease enzymes of insects.


Assuntos
Cistatinas , Cisteína Proteases , Sequência de Aminoácidos , Animais , Simulação por Computador , Cisteína , Inibidores de Cisteína Proteinase/farmacologia , Insetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA