RESUMO
Pain has a negative impact on public health, reducing quality of life. Unfortunately, current treatments are not fully effective and have adverse effects. Therefore, there is a need to develop new analgesic compounds. Due to promising results regarding the antinociceptive effect of N-(3-(phenylselanyl)prop-2-in-1-yl)benzamide (SePB), this study aimed to evaluate the participation of the dopaminergic and noradrenergic systems in this effect in mice, as well as its toxicity. To this, the antagonists sulpiride (D2/D3 receptor antagonist, 5 mg/kg), SCH-23390 (D1 receptor antagonist, 0.05 mg/kg), prazosin (α1 adrenergic receptor antagonist, 0.15 mg/kg), yohimbine (α2-adrenergic receptors, 0.15 mg/kg) and propranolol (non-selective ß-adrenergic antagonist, 10 mg/kg) were administered intraperitoneally to mice 15 min before SePB (10 mg/kg, intragastrically), except for propranolol (20 min). After 26 min of SePB administration, the open field test was performed for 4 min to assess locomotor activity, followed by the tail immersion test to measure the nociceptive response. For the toxicity test, animals received a high dose of 300 mg/kg of SePB. SePB showed an increase in the latency for nociceptive response in the tail immersion test, and this effect was prevented by SCH-23390, yohimbine and propranolol, indicating the involvement of D1, α2 and ß-adrenergic receptors in the antinociceptive mechanism of the SePB effect. No changes were observed in the open field test, and the toxicity assessment suggested that SePB has low potential to induce toxicity. These findings contribute to understanding SePB's mechanism of action, with a focus on the development of new alternatives for pain treatment.
Assuntos
Propranolol , Qualidade de Vida , Camundongos , Animais , Propranolol/farmacologia , Propranolol/uso terapêutico , Analgésicos/toxicidade , Dor/tratamento farmacológico , Norepinefrina , Ioimbina/toxicidade , Ioimbina/uso terapêutico , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Dopamina , Sulpirida , Receptores Adrenérgicos alfa 2RESUMO
RATIONALE: Major Depressive Disorder (MDD) significantly impairs the quality of life for those affected. While the exact causes of MDD are not fully understood, the deficit of monoamines, especially serotonin and noradrenaline, is widely accepted. Resistance to long-term treatments and adverse effects are often observed, highlighting the need for new pharmacological therapies. Synthetic organic compounds containing selenium have exhibited pharmacological properties, including potential antidepressant effects. OBJECTIVE: To evaluate the antidepressant-like effect of N-(3-((3-(trifluoromethyl)phenyl)selenyl)prop-2-yn-1-yl) benzamide (CF3SePB) in mice and the involvement of the serotonergic and noradrenergic systems. METHODS: Male Swiss mice were treated with CF3SePB (1-50 mg/kg, i.g.) and 30 min later the forced swimming test (FST) or tail suspension test (TST) was performed. To investigate the involvement of the serotonergic and noradrenergic systems in the antidepressant-like effect of CF3SePB, mice were pre-treated with p-CPA (a 5-HT depletor, 100 mg/kg, i.p.) or the receptor antagonists WAY100635 (0.1 mg/kg, s.c., a 5-HT1A receptor antagonist), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), ondansetron (1 mg/kg, i.p., a 5-HT3 receptor antagonist), GR110838 (0.1 mg/kg, i.p., a 5-HT4 receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenergic receptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenergic receptor antagonist) and propranolol (2 mg/kg, i.p., a non-selective beta-adrenergic receptor antagonist) at specific times before CF3SePB (50 mg/kg, i.g.), and after 30 min of CF3SePB administration the FST was performed. RESULTS: CF3SePB showed an antidepressant-like effect in both FST and TST and this effect was related to the modulation of the serotonergic system, specially the 5-HT1A and 5-HT3 receptors. None of the noradrenergic antagonists prevented the antidepressant-like effect of CF3SePB. The compound exhibited a low potential for inducing acute toxicity in adult female Swiss mice. CONCLUSION: This study pointed a new compound with antidepressant-like effect, and it could be considered for the development of new antidepressants.
Assuntos
Antidepressivos , Benzamidas , Relação Dose-Resposta a Droga , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Benzamidas/farmacologia , Natação , Compostos Organosselênicos/farmacologia , Serotonina/metabolismo , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Comportamento Animal/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Elevação dos Membros PosterioresRESUMO
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are highly reactive molecules produced naturally by the body and by external factors. When these species are generated in excessive amounts, they can lead to oxidative stress, which in turn can cause cellular and tissue damage. This damage is known to contribute to the aging process and is associated with age-related conditions, including cardiovascular and neurodegenerative diseases. In recent years, there has been an increased interest in the development of compounds with antioxidant potential to assist in the treatment of disorders related to oxidative stress. In this way, compounds containing sulfur (S) and/or selenium (Se) have been considered promising due to the relevant role of these elements in the biosynthesis of antioxidant enzymes and essential proteins with physiological functions. In this context, studies involving heterocyclic nuclei have significantly increased, notably highlighting the indolizine nucleus, given that compounds containing this nucleus have been demonstrating considerable pharmacological properties. Thus, the objective of this research was to evaluate the in vitro antioxidant activity of eight S- and Se-derivatives containing indolizine nucleus and different substituents. The in vitro assays 1,1-diphenyl-2-picryl-hydrazil (DPPH) scavenger activity, ferric ion (Fe3+) reducing antioxidant power (FRAP), thiobarbituric acid reactive species (TBARS), and protein carbonylation (PC) were used to access the antioxidant profile of the compounds. Our findings demonstrated that all the compounds showed FRAP activity and reduced the levels of TBARS and PC in mouse brains homogenates. Some compounds were also capable of acting as DPPH scavengers. In conclusion, the present study demonstrated that eight novel organochalcogen compounds exhibit antioxidant activity.
Assuntos
Antioxidantes , Selênio , Camundongos , Animais , Antioxidantes/farmacologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Estresse Oxidativo , Selênio/química , Espécies Reativas de OxigênioRESUMO
1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.
Assuntos
Antidepressivos , Dopamina , Monoaminoxidase , Compostos Organosselênicos , Animais , Masculino , Camundongos , Antidepressivos/farmacologia , Compostos Organosselênicos/farmacologia , Monoaminoxidase/metabolismo , Monoaminoxidase/efeitos dos fármacos , Dopamina/metabolismo , Antagonistas de Dopamina/farmacologia , Natação , Norepinefrina/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Dopaminérgicos/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/metabolismo , Atividade Motora/efeitos dos fármacosRESUMO
RATIONALE: Depression is a mental disorder that affects approximately 280 million people worldwide. In the search for new treatments for mood disorders, compounds containing selenium and indolizine derivatives show promising results. OBJECTIVES AND METHODS: To evaluate the antidepressant-like effect of 1-(phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) (0.5-50 mg/kg, intragastric-i.g.) on the tail suspension test (TST) and the forced swim test (FST) in adult male Swiss mice and to elucidate the role of the serotonergic system in this effect through pharmacological and in silico approaches, as well to evaluate acute oral toxicity at a high dose (300 mg/kg). RESULTS: MeSeI administered 30 min before the FST and the TST reduced immobility time at doses from 1 mg/kg and at 50 mg/kg and increased the latency time for the first episode of immobility, demonstrating an antidepressant-like effect. In the open field test (OFT), MeSeI did not change the locomotor activity. The antidepressant-like effect of MeSeI (50 mg/kg, i.g.) was prevented by the pre-treatment with p-chlorophenylalanine (p-CPA), a selective tryptophan hydroxylase inhibitor (100 mg/kg, intraperitoneally-i.p. for 4 days), with ketanserin, a 5-HT2A/2C receptor antagonist (1 mg/kg, i.p.), and with GR113808, a 5-HT4 receptor antagonist (0.1 mg/kg, i.p.), but not with WAY100635, a selective 5-HT1A receptor antagonist (0.1 mg/kg, subcutaneous-s.c.) and ondansetron, a 5-HT3 receptor antagonist (1 mg/kg, i.p.). MeSeI showed a binding affinity with 5-HT2A, 5 -HT2C, and 5-HT4 receptors by molecular docking. MeSeI (300 mg/kg, i.g.) demonstrated low potential to cause acute toxicity in adult female Swiss mice. CONCLUSION: In summary, MeSeI exhibits an antidepressant-like effect mediated by the serotonergic system and could be considered for the development of new treatment strategies for depression.
Assuntos
Depressão , Indolizinas , Masculino , Feminino , Animais , Camundongos , Depressão/tratamento farmacológico , Depressão/metabolismo , Serotonina/metabolismo , Simulação de Acoplamento Molecular , Atividade Motora , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Natação , Indolizinas/farmacologia , Elevação dos Membros PosterioresRESUMO
Major depressive disorder (MDD) is a psychiatric disorder that affects a large portion of the population, with dysregulation of the serotonergic system, which is deeply involved in both the pathophysiology of MDD and mechanism of action of many antidepressants. Current pharmacological therapies do not meet the neurobiological needs of all depressed individuals, making the development of new antidepressants necessary. In recent decades, compounds containing triazoles have become promising due to their range of biological activities, including antidepressant activity. In this study, we evaluated the antidepressant-like effect of a hybrid containing triazole and acetophenone, 1-(2-(4-(4-ethylphenyl)-1H-1,2,3-triazol-1-yl)phenyl)ethan-1-one (ETAP) (0.5-5 mg/kg), in the forced swimming test (FST) and tail suspension test (TST) in mice, as well as the involvement of the serotonergic system in this effect. Our findings demonstrated that ETAP exhibited an antidepressant-like effect from the dose of 1 mg/kg and that this effect is modulated by 5-HT2A/2C and 5-HT4 receptors. We also demonstrated that this effect may be related to inhibition of monoamine oxidase A activity in the hippocampus. Additionally, we evaluated the in silico pharmacokinetic profile of ETAP, which predicted its penetration into the central nervous system. ETAP exhibited a low potential for toxicity at a high dose, making this molecule interesting for the development of a new therapeutic strategy for MDD.