Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 27(8): 1992-2006, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411448

RESUMO

Amphibians undergo significant developmental changes during their life cycle, as they typically move from a primarily aquatic environment to a more terrestrial one. Amphibian skin is a mucosal tissue that assembles communities of symbiotic microbiota. However, it is currently not well understood as to where amphibians acquire their skin symbionts, and whether the sources of microbial symbionts change throughout development. In this study, we utilized data collected from four wild boreal toad populations (Anaxyrus boreas); specifically, we sampled the skin bacterial communities during toad development, including eggs, tadpoles, subadults and adults as well as environmental sources of bacteria (water, aquatic sediment and soil). Using 16S rRNA marker gene profiling coupled with SourceTracker, we show that while primary environmental sources remained constant throughout the life cycle, secondary sources of boreal toad symbionts significantly changed with development. We found that toad skin communities changed predictably across development and that two developmental disturbance events (egg hatching and metamorphosis) dictated major changes. Toad skin communities assembled to alternative stable states following each of these developmental disturbances. Using the predicted average rRNA operon copy number of the communities at each life stage, we showed how the skin bacterial communities undergo a successional pattern whereby "fast-growing" (copiotroph) generalist bacteria dominate first before "slow-growing" (oligotroph) specialized bacteria take over. Our study highlights how host-associated bacterial community assembly is tightly coupled to host development and that host-associated communities demonstrate successional patterns akin to those observed in free-living bacteria as well as macrofaunal communities.


Assuntos
Bufonidae/microbiologia , Interações entre Hospedeiro e Microrganismos/genética , Metamorfose Biológica/genética , Simbiose/genética , Animais , Bufonidae/genética , Bufonidae/crescimento & desenvolvimento , Larva/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia
2.
Integr Comp Biol ; 57(4): 690-704, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28985326

RESUMO

Recent studies increasingly note the effect of captivity or the built environment on the microbiome of humans and other animals. As symbiotic microbes are essential to many aspects of biology (e.g., digestive and immune functions), it is important to understand how lifestyle differences can impact the microbiome, and, consequently, the health of hosts. Animals living in captivity experience a range of changes that may influence the gut bacteria, such as diet changes, treatments, and reduced contact with other individuals, species and variable environmental substrates that act as sources of bacterial diversity. Thus far, initial results from previous studies point to a pattern of decreased bacterial diversity in captive animals. However, these studies are relatively limited in the scope of species that have been examined. Here we present a dataset that includes paired wild and captive samples from mammalian taxa across six Orders to investigate generalizable patterns of the effects captivity on mammalian gut bacteria. In comparing the wild to the captive condition, our results indicate that alpha diversity of the gut bacteria remains consistent in some mammalian hosts (bovids, giraffes, anteaters, and aardvarks), declines in the captive condition in some hosts (canids, primates, and equids), and increases in the captive condition in one host taxon (rhinoceros). Differences in gut bacterial beta diversity between the captive and wild state were observed for most of the taxa surveyed, except the even-toed ungulates (bovids and giraffes). Additionally, beta diversity variation was also strongly influenced by host taxonomic group, diet type, and gut fermentation physiology. Bacterial taxa that demonstrated larger shifts in relative abundance between the captive and wild states included members of the Firmicutes and Bacteroidetes. Overall, the patterns that we observe will inform a range of disciplines from veterinary practice to captive breeding efforts for biological conservation. Furthermore, bacterial taxa that persist in the captive state provide unique insight into symbiotic relationships with the host.


Assuntos
Animais de Zoológico/microbiologia , Microbioma Gastrointestinal , Mamíferos/microbiologia , Animais , Bactérias/classificação , Fenômenos Fisiológicos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA