Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Biol Chem ; 295(19): 6457-6471, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32229586

RESUMO

Multidrug resistance (MDR) in cancer arises from cross-resistance to structurally- and functionally-divergent chemotherapeutic drugs. In particular, MDR is characterized by increased expression and activity of ATP-binding cassette (ABC) superfamily transporters. Sphingolipids are substrates of ABC proteins in cell signaling, membrane biosynthesis, and inflammation, for example, and their products can favor cancer progression. Glucosylceramide (GlcCer) is a ubiquitous glycosphingolipid (GSL) generated by glucosylceramide synthase, a key regulatory enzyme encoded by the UDP-glucose ceramide glucosyltransferase (UGCG) gene. Stressed cells increase de novo biosynthesis of ceramides, which return to sub-toxic levels after UGCG mediates incorporation into GlcCer. Given that cancer cells seem to mobilize UGCG and have increased GSL content for ceramide clearance, which ultimately contributes to chemotherapy failure, here we investigated how inhibition of GSL biosynthesis affects the MDR phenotype of chronic myeloid leukemias. We found that MDR is associated with higher UGCG expression and with a complex GSL profile. UGCG inhibition with the ceramide analog d-threo-1-(3,4,-ethylenedioxy)phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (EtDO-P4) greatly reduced GSL and monosialotetrahexosylganglioside levels, and co-treatment with standard chemotherapeutics sensitized cells to mitochondrial membrane potential loss and apoptosis. ABC subfamily B member 1 (ABCB1) expression was reduced, and ABCC-mediated efflux activity was modulated by competition with nonglycosylated ceramides. Consistently, inhibition of ABCC-mediated transport reduced the efflux of exogenous C6-ceramide. Overall, UGCG inhibition impaired the malignant glycophenotype of MDR leukemias, which typically overcomes drug resistance through distinct mechanisms. This work sheds light on the involvement of GSL in chemotherapy failure, and its findings suggest that targeted GSL modulation could help manage MDR leukemias.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Glicoesfingolipídeos/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Neoplasias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicoesfingolipídeos/genética , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Neoplasias/genética , Propanolaminas/farmacologia , Pirrolidinas/farmacologia
2.
Org Biomol Chem ; 19(13): 2923-2931, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33471013

RESUMO

The synthesis of a vicinally branched trisaccharide composed of two d-galactofuranoside residues attached viaß-(1 → 2)- and ß-(1 → 3)-linkages to the α-d-galactopyranoside unit has been performed for the first time. The reported trisaccharide represents the galactoxylomannan moiety first described in 2017, which is the capsular polysaccharide of the opportunistic fungal pathogen Cryptococcus neoformans responsible for life-threatening infections in immunocompromised patients. The NMR-data reported here for the synthetic model trisaccharide are in good agreement with the previously assessed structure of galactoxylomannan and are useful for structural analysis of related polysaccharides. The target trisaccharide as well as the constituent disaccharides were analyzed by a combination of computational and NMR methods to demonstrate good convergence of the theoretical and experimental results. The results suggest that the furanoside ring conformation may strongly depend on the aglycon structure. The reported conformational tendencies are important for further analysis of carbohydrate-protein interaction, which is critical for the host response toward C. neoformans infection.


Assuntos
Cryptococcus neoformans/química , Polissacarídeos/química , Configuração de Carboidratos , Teoria da Densidade Funcional , Espectroscopia de Ressonância Magnética , Polissacarídeos/síntese química
3.
Glycobiology ; 27(6): 582-592, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986834

RESUMO

Galactoxylomannans (GalXMs) are a mixture of neutral and acidic capsular polysaccharides produced by the opportunistic fungus Cryptococcus neoformans that exhibit potent suppressive effects on the host immune system. Previous studies describing the chemical structure of C. neoformans GalXMs have reported species without O-acetyl substituents. Herein we describe that C. neoformans grown in capsule-inducing medium produces highly O-acetylated GalXMs. The location of the O-acetyl groups was determined by nuclear magnetic resonance (NMR) spectroscopy. In the neutral GalXM (NGalXM), 80% of 3-linked mannose (α-Manp) residues present in side chains are acetylated at the O-2 position. In the acidic GalXM also termed glucuronoxylomannogalactan (GXMGal), 85% of the 3-linked α-Manp residues are acetylated either in the O-2 (75%) or in the O-6 (25%) position, but O-acetyl groups are not present at both positions simultaneously. In addition, NMR spectroscopy and methylation analysis showed that ß-galactofuranose (ß-Galf) units are linked to O-2 and O-3 positions of nonbranched α-galactopyranose (α-Galp) units present in the GalXMs backbone chain. These findings highlight new structural features of C. neoformans GalXMs. Among these features, the high degree of O-acetylation is of particular interest, since O-acetyl group-containing polysaccharides are known to possess a range of immunobiological activities.


Assuntos
Cryptococcus neoformans/química , Polissacarídeos Fúngicos/química , Polissacarídeos/química
4.
An Acad Bras Cienc ; 88(3): 1519-29, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27556227

RESUMO

One of the main obstacles to the treatment of Chagas disease is the genetic and phenotypical variance displayed by T. cruzi strains, resulting in differences in morphology, virulence, pathogenicity and drug susceptibility. To better understand the role of glycoconjungates in Chagas disease, we performed the molecular characterization of the O-linked chains from mucins and glycoinositolphospholipids (GIPLs) of the Silvio X10 clone 1 strain. We demonstrated the presence of a ß-galactofuranose (ß-Galf) unity linked to the O-4 position of the α-N-acetylglucosamine (α-GlcNAc)O-4 in Tc-mucins. GIPLs analysis showed that the lipidic portion is exclusively composed of ceramide and the PI-oligossacharidic portion contains the Man4(AEP)GlcN-Ins-PO4 core, substituted by ethanolamine-phosphate (EtNP) on the third distal mannose from inositol, which may or may not have a terminal ß Galf unity. These results confirm the classification of the Silvio X10/1 strain in group T. cruzi I. Again, it is noted that the study of T. cruzi surface glycoconjugates confirm the molecular results and the hypothesis that surface glycoconjugates may be interesting biomarker for the differentiation of trypanosomatid strains.


Assuntos
Glicoconjugados/química , Glicolipídeos/química , Mucinas/química , Fosfolipídeos/química , Trypanosoma cruzi/química , Trypanosoma cruzi/classificação , Genótipo
5.
Glycobiology ; 23(4): 438-52, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23263200

RESUMO

The glycobiology of the cestodes, a class of parasitic flatworms, is still largely unexplored. An important cestode species is Echinococcus granulosus, the tissue-dwelling larval stage of which causes hydatid disease. The E. granulosus larva is protected from the host by a massive mucin-based extracellular matrix termed laminated layer (LL). We previously reported ( Díaz et al. 2009. Biochemistry 48:11678-11691) the molecular structure of the most abundant LL O-glycans, comprising up to six monosaccharide residues. These are based on Cores 1 and 2, in cases elongated by a chain of Galpß1-3 residues, which can be capped by Galpα1-4. In addition, the Core 2 GlcNAcp residue can be decorated with the Galpα1-4Galpß1-4 disaccharide. Larger glycans also detected contained additional HexNAc residues that could not be explained by the structural repertoire described above. In this work, we elucidate, by mass spectrometry (MS) and nuclear magnetic resonance (NMR), six additional glycans from the E. granulosus LL between six and eight residues in size. Their structures are related to those already described but in cases bear GlcNAcpß1-6 or Galpα1-4Galpß1-4GlcNAcpß1-6 as ramifications on the core Galpß1-3 residue. We also obtained evidence that noncore Galpß1-3 residues can be similarly ramified. Thus, the new motif together with the previous information may explain all the glycan compositions detected in the LL by MS. In addition, we show that the anti-Echinococcus monoclonal antibody E492 (Parasite Immunol 21:141, 1999) recognizes Galpα1-4Galpß1-4GlcNAcp (the blood P(1)-antigen motif). This explains the antibody's reactivity with a range of Echinococcus tissues, as the P(1)-motif is also carried on non-LL N-glycans and glycolipids from this genus.


Assuntos
Echinococcus granulosus/química , Polissacarídeos/química , Animais , Configuração de Carboidratos , Globosídeos/imunologia , Monossacarídeos/química , Polissacarídeos/imunologia
6.
J Biol Chem ; 285(18): 13388-96, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20106975

RESUMO

Upon activation, cytotoxic CD8(+) T lymphocytes are desialylated exposing beta-galactose residues in a physiological change that enhances their effector activity and that can be monitored on the basis of increased binding of the lectin peanut agglutinin. Herein, we investigated the impact of sialylation mediated by trans-sialidase, a specific and unique Trypanosoma transglycosylase for sialic acid, on CD8(+) T cell response of mice infected with T. cruzi. Our data demonstrate that T. cruzi uses its trans-sialidase enzyme to resialylate the CD8(+) T cell surface, thereby dampening antigen-specific CD8(+) T cell response that might favor its own persistence in the mammalian host. Binding of the monoclonal antibody S7, which recognizes sialic acid-containing epitopes on the 115-kDa isoform of CD43, was augmented on CD8(+) T cells from ST3Gal-I-deficient infected mice, indicating that CD43 is one sialic acid acceptor for trans-sialidase activity on the CD8(+) T cell surface. The cytotoxic activity of antigen-experienced CD8(+) T cells against the immunodominant trans-sialidase synthetic peptide IYNVGQVSI was decreased following active trans-sialidase-mediated resialylation in vitro and in vivo. Inhibition of the parasite's native trans-sialidase activity during infection strongly decreased CD8(+) T cell sialylation, reverting it to the glycosylation status expected in the absence of parasite manipulation increasing mouse survival. Taken together, these results demonstrate, for the first time, that T. cruzi subverts sialylation to attenuate CD8(+) T cell interactions with peptide-major histocompatibility complex class I complexes. CD8(+) T cell resialylation may represent a sophisticated strategy to ensure lifetime host parasitism.


Assuntos
Antígenos de Protozoários/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Peptídeos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Animais , Anticorpos Monoclonais/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/enzimologia , Doença de Chagas/genética , Doença de Chagas/imunologia , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Glicosilação , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Leucossialina/genética , Leucossialina/imunologia , Leucossialina/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ácido N-Acetilneuramínico/genética , Ácido N-Acetilneuramínico/imunologia , Neuraminidase/imunologia , Peptídeos/genética , Peptídeos/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Sialiltransferases/genética , Sialiltransferases/imunologia , Sialiltransferases/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , beta-Galactosídeo alfa-2,3-Sialiltransferase
7.
Glycobiology ; 20(3): 338-47, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19933228

RESUMO

Burkholderia kururiensis, strain M130, an endophytic diazotrophic bacterium isolated from rice roots, produces acetylated acidic exopolysaccharides which can be separated by anion exchange chromatography. These were characterized by nuclear magnetic resonance spectroscopy, methylation analysis and Smith degradation. The exopolysaccharides eluted with 0.5 M NaCl were produced when the bacterium was grown in a medium containing mannitol as the sole carbon source, and showed to be a mixture of two different polymers, composed of hepta or octasaccharide repeat units, consistent with following structure: [structure: see text]. The ability of diazotrophic Burkholderia to produce two exopolysaccharides that differ by the presence of a terminal glucosyl residue provides insight into polysaccharide function with potentially significant biological consequences in the endophytic-host plant interaction.


Assuntos
Burkholderia/metabolismo , Fixação de Nitrogênio , Polissacarídeos Bacterianos/química , Sequência de Carboidratos , Dados de Sequência Molecular , Nitrogênio/metabolismo , Polissacarídeos Bacterianos/isolamento & purificação
8.
Glycobiology ; 20(8): 1034-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20466651

RESUMO

One of the most interesting aspects of Trypanosoma cruzi is its adaptation to obtain sialic acid from its host, fulfilling this need exclusively through the reaction catalyzed by enzymatically active trans-sialidase (aTS), thought to play an important role in the pathogenesis of Chagas' disease. Herein, we report that 2-difluoromethyl-4-nitrophenyl-3,5-dideoxy-d-glycero-alpha-d-galacto-2-nonulopyranosid acid (NeuNAcFNP) inactivates aTS time- and dose-dependently, and this inhibition was not relieved removing the inhibitor. Also, NeuNAcFNP causes a decrease in infection of mammalian cells. Characterization of labeled aTS by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry revealed that inactivation of the enzyme occurs through formation of a covalent bond between Arg245 and Asp247 and the inhibitor aglycone. Participation of Asp247 in the catalytic mechanism was proved by constructing a TSD247A mutant, which presents only residual activity. Molecular dynamic simulations indicate that the D247A mutation results in a more open catalytic cleft. In summary, NeuNAcFNP is the first reported mechanism-based inhibitor of aTS, representing a new template for drug design and opening new possibilities for chemotherapy of Chagas' disease, as well as for the elucidation of aTS function in T. cruzi pathogenesis and biology.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicoproteínas/antagonistas & inibidores , Interações Hospedeiro-Parasita/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Ácidos Siálicos/farmacologia , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/patogenicidade , Animais , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Neuraminidase/química , Neuraminidase/metabolismo , Ácidos Siálicos/química , Relação Estrutura-Atividade , Trypanosoma cruzi/efeitos dos fármacos
9.
Mem Inst Oswaldo Cruz ; 105(8): 949-56, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21225189

RESUMO

Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further.


Assuntos
Plasmodium falciparum/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Glicosilação
10.
Biochemistry ; 48(49): 11678-91, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19877716

RESUMO

The cestodes constitute important but understudied human and veterinary parasites. Their surfaces are rich in carbohydrates, on which very little structural information is available. The tissue-dwelling larva (hydatid cyst) of the cestode Echinococcus granulosus is outwardly protected by a massive layer of carbohydrate-rich extracellular matrix, termed the laminated layer. The monosaccharide composition of this layer suggests that its major carbohydrate components are exclusively mucin-type O-glycans. We have purified these glycans after their release from the crude laminated layer and obtained by MS and NMR the complete structure of 10 of the most abundant components. The structures, between two and six residues in length, encompass a limited number of biosynthetic motifs. The mucin cores 1 and 2 are either nondecorated or elongated by a chain of Galpbeta1-3 residues. This chain can be capped by a single Galpalpha1-4 residue, such capping becoming more dominant with increasing chain size. In addition, the core 2 N-acetylglucosamine residue is in cases substituted with the disaccharide Galpalpha1-4Galpbeta1-4, giving rise to the blood P(1)-antigen motif. Larger, also related, glycans exist, reaching at least 18 residues in size. The glycans described are related but larger than those previously described from an Echinococcus multilocularis mucin [Hulsmeier, A. J., et al. (2002) J. Biol. Chem. 277, 5742-5748]. Our results reveal that the E. granulosus cyst exposes to the host only a few different major carbohydrate motifs. These motifs are composed essentially of galactose units and include the elongation by (Galpbeta1-3)(n) and the capping by Galpalpha1-4, novel in animal mucin-type O-glycans.


Assuntos
Equinococose/metabolismo , Equinococose/parasitologia , Echinococcus granulosus/química , Galactose/química , Mucinas/química , Polissacarídeos/química , Animais , Configuração de Carboidratos , Sequência de Carboidratos , Bovinos , Cromatografia em Gel , Matriz Extracelular/química , Interações Hospedeiro-Parasita , Espectroscopia de Ressonância Magnética , Metilglicosídeos/química , Dados de Sequência Molecular , Oligossacarídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Álcoois Açúcares/química
11.
Glycobiology ; 19(8): 918-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19468051

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is surrounded by a mucin coat that plays important functions in parasite survival/invasion and is extensively O-glycosylated by Golgi and cell surface glycosyltransferases. The addition of the first sugar, alpha-N-acetylglucosamine (GlcNAc) linked to Threonine (Thr), is catalyzed by a polypeptide alpha-GlcNAc-transferase (pp-alphaGlcNAcT) which is unstable to purification. Here, a comparison of the genomes of T. cruzi and Dictyostelium discoideum, an amoebazoan which also forms this linkage, identified two T. cruzi genes (TcOGNT1 and TcOGNT2) that might encode this activity. Though neither was able to complement the Dictyostelium gene, expression in the trypanosomatid Leishmania tarentolae resulted in elevated levels of UDP-[(3)H]GlcNAc:Thr-peptide GlcNAc-transferase activity and UDP-[(3)H]GlcNAc breakdown activity. The ectodomain of TcOGNT2 was expressed and the secreted protein was found to retain both activities after extensive purification away from other proteins and the endogenous activity. Product analysis showed that (3)H was transferred as GlcNAc to a hydroxyamino acid, and breakdown was due to hydrolysis. Both activities were specific for UDP-GlcNAc relative to UDP-GalNAc and were abolished by active site point mutations that inactivate a related Dictyostelium enzyme and distantly related animal pp-alphaGalNAcTs. The peptide preference and the alkaline pH optimum were indistinguishable from those of the native activity in T. cruzi microsomes. The results suggest that mucin-type O-glycosylation in T. cruzi is initiated by conserved members of CAZy family GT60, which is homologous to the GT27 family of animal pp-alphaGalNAcTs that initiate mucin-type O-glycosylation in animals.


Assuntos
Mucinas/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Animais , Dictyostelium/genética , Dictyostelium/metabolismo , Genoma de Protozoário , Glicosilação , Leishmania/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Difosfato de Uridina/metabolismo
12.
Glycobiology ; 19(12): 1462-72, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19696235

RESUMO

Trypanosoma cruzi relies on highly galactosylated molecules as virulence factors and the enzymes involved in sugar biosynthesis are potential therapeutic targets. The synthesis of UDP-galactose in T. cruzi requires the activity of phosphoglucomutase (PGM), the enzyme that catalyzes the interconversion of glucose-6-phosphate and glucose-1-phosphate. Several enzymes that participate in carbohydrate metabolism in trypanosomes are confined to specialized peroxisome-like organelles called glycosomes. The majority of glycosomal proteins contain peroxisome-targeting signals (PTS) at the COOH- or at the amino-terminus, which drive their transport to glycosomes. We had previously identified the T. cruzi PGM gene (TcPGM) and demonstrated that it encodes a functional enzyme. Here, we show that, in contrast to yeast and mammalian cells, TcPGM resides in glycosomes of the parasite. However, no classical PTS1 or PTS2 motif is present in its sequence. We investigated glycosomal targeting by generating T. cruzi cell lines expressing different domains of TcPGM fused to the green fluorescent protein (GFP). The analysis of the subcellular localization of fusion proteins revealed that an internal targeting signal of TcPGM, residing between amino acid residues 260 and 380, is capable of targeting GFP to glycosomes. These results demonstrate that, in T. cruzi, PGM import into glycosomes is mediated by a novel non-PTS domain that is located internally in the protein.


Assuntos
Microcorpos/metabolismo , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Sinais Direcionadores de Proteínas , Trypanosoma cruzi/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Fosfoglucomutase/genética , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Distribuição Tecidual , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
13.
Cell Microbiol ; 10(6): 1274-85, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18284419

RESUMO

The effects of capsular polysaccharides, galactoxylomannan (GalXM) and glucuronoxylomannan (GXM), from acapsular (GXM negative) and encapsulate strains of Cryptococcus neoformans were investigated in RAW 264.7 and peritoneal macrophages. Here, we demonstrate that GalXM and GXM induced different cytokines profiles in RAW 264.7 macrophages. GalXM induced production of TNF-alpha, NO and iNOS expression, while GXM predominantly induced TGF-beta secretion. Both GalXM and GXM induced early morphological changes identified as autophagy and late macrophages apoptosis mediated by Fas/FasL interaction, a previously unidentified mechanism of virulence. GalXM was more potent than GXM at induction of Fas/FasL expression and apoptosis on macrophages in vitro and in vivo. These findings uncover a mechanism by which capsular polysaccharides from C. neoformans might compromise host immune responses.


Assuntos
Cápsulas Bacterianas/química , Cryptococcus neoformans/química , Proteína Ligante Fas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Polissacarídeos Bacterianos/farmacologia , Polissacarídeos/farmacologia , Animais , Apoptose , Células Cultivadas , Criptococose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Polissacarídeos/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Cell Microbiol ; 10(1): 88-99, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17672865

RESUMO

The protozoan responsible for Chagas' disease, Trypanosoma cruzi, expresses on its surface an unusual trans-sialidase enzyme thought to play an important role in host-parasite interactions. Trans-sialidase is the product of a multigene family encoding both active and inactive proteins. We have demonstrated that despite lacking enzymatic activity due to a single mutation, Tyr342-His, inactive trans-sialidase displays sialic acid binding activity, with identical specificity to that of its active analogue. In this work we demonstrate that binding of a recombinant inactive trans-sialidase to molecules containing alpha2,3-linked sialic acid on endothelial cell surface triggers NF-kappaB activation, expression of adhesion molecules and upregulation of parasite entry into host cells. Furthermore, inactive recombinant trans-sialidase blocks endothelial cell apoptosis induced by growth factor deprivation. These results suggest that inactive members of the trans-sialidase family play a role in endothelial cell responses to T. cruzi infection.


Assuntos
Células Endoteliais/parasitologia , Glicoproteínas/metabolismo , Neuraminidase/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/fisiologia , Substituição de Aminoácidos/genética , Animais , Apoptose/imunologia , Moléculas de Adesão Celular/biossíntese , Linhagem Celular , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/imunologia , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Ácido N-Acetilneuramínico/metabolismo , NF-kappa B/metabolismo , Neuraminidase/genética , Neuraminidase/imunologia , Mutação Puntual , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Trypanosoma cruzi/genética
15.
Mem Inst Oswaldo Cruz ; 104 Suppl 1: 270-4, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19753484

RESUMO

Trypanosoma cruzi sialoglycoproteins (Tc-mucins) are mucin-like molecules linked to a parasite membrane via a glycosylphosphatidylinositol anchor. We previously determined the structures of Tc-mucin O-glycan domains from several T. cruzi strains and observed significant differences among them. We now report the amino acid content and structure of Tc-mucin O-glycan chains from T. cruzi Colombiana, a strain resistant to common trypanocidal drugs. Amino acid analysis demonstrated the predominance of threonine residues (42%) and helped to identify the O-glycans as belonging to a Tc-mucin family that contain a beta-galactofuranose (beta-Galf) residue attached to an alpha-N-acetylglucosamine (alpha-GlcNAc) O-4, with the most complex glycan, a pentasaccharide-GlcNAc-ol with a branched trigalactopyranose chain, on the GlcNAc O-6. The presence of beta-Galf on O-glycans from T. cruzi Colombiana mucins supports the use of glycosylation as a phylogenetic marker for the classification of Colombiana in the T. cruzi I group.


Assuntos
Acetilglucosamina/análise , Configuração de Carboidratos , Mucinas/química , Oligossacarídeos/análise , Sialoglicoproteínas/análise , Trypanosoma cruzi/química , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Espectroscopia de Ressonância Magnética , Trypanosoma cruzi/classificação
16.
Carbohydr Res ; 475: 1-10, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742969

RESUMO

Glucuronoxylomannogalactans (GXMGals) are characteristic capsular polysaccharides produced by the opportunistic fungus C. neoformans, which are implicated in cryptococcal virulence, via impairment of the host immune response. We determined for the first time the structure of a lipoglucuronomannogalactan (LGMGal), isolated from the surface of a mutant C. neoformans carrying a deletion in the UDP-GlcA decarboxylase gene. Monosaccharide composition and methylation analyses, as well as nuclear magnetic resonance spectroscopy were employed in discerning the structure. Our results show that the polysaccharide structure of the LGMGal differs from GXMGal by the absence of xylose and 2-O-acetylated mannose residues. LGMGal consists of a galactan main chain -[-6-α-Gal-]-, where every second Gal residue is substituted at O-3 with an oligosaccharide α-Man6OAc-3-α-Man-4-(ß-GlcA-3)-ß-Gal-; components in italic being non-stoichiometric. The substitution rate of ß-Galp units by GlcpA is 35%. Additionally, we determined that the glycolipid anchor of the LGMGal is based on an myo-inositol phosphoceramide composed of C18-phytosphingosine and monohydroxylated lignoceric acid (2OHC24:0 fatty acid).


Assuntos
Parede Celular/química , Cryptococcus neoformans/química , Cryptococcus neoformans/citologia , Polissacarídeos/isolamento & purificação , Acetilação , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/química
17.
BMC Microbiol ; 8: 75, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18482453

RESUMO

BACKGROUND: The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs). In the present study, nuclear magnetic resonance (NMR) was used to map the binding site(s) of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction. RESULTS: The capacity of a panel of 30 mer synthetic peptides covering the full length of Hlp to bind to heparin/heparan sulfate was analyzed by solid phase assays, NMR, and affinity chromatography. An additional active region between the residues Gly46 and Ala60 was defined at the N-terminal domain of Hlp, expanding the previously defined heparin-binding site between Thr31 and Phe50. Additionally, the C-terminus, rich in Lys residues, was confirmed as another heparan sulfate binding region. The amino acids in Hlp identified as mediators in the interaction with heparan sulfate were Arg, Val, Ile, Lys, Phe, and Thr. CONCLUSION: Our data indicate that Hlp interacts with heparan sulfate through two distinct regions of the protein. Both heparan sulfate-binding regions here defined are preserved in all mycobacterial Hlp homologues that have been sequenced, suggesting important but possibly divergent roles for this surface-exposed protein in both pathogenic and saprophic species.


Assuntos
Adesinas Bacterianas/química , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Mycobacterium leprae/química , Sequência de Aminoácidos , Sítios de Ligação , Cromatografia de Afinidade , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Sefarose/análogos & derivados , Sefarose/metabolismo , Cloreto de Sódio/metabolismo
18.
J Leukoc Biol ; 82(3): 488-96, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17540734

RESUMO

We have demonstrated recently that the glycoinositolphospholipid (GIPL) molecule from the protozoan Trypanosoma cruzi is a TLR4 agonist with proinflammatory effects. Here, we show that GIPL-induced neutrophil recruitment into the peritoneal cavity is mediated by at least two pathways: one, where IL-1beta acts downstream of TNF-alpha, and a second, which is IL-1beta- and TNFRI-independent. Moreover, NKT cells participate in this proinflammatory cascade, as in GIPL-treated CD1d(-/-) mice, TNF-alpha and MIP-2 levels are reduced significantly. As a consequence of this inflammatory response, spleen and lymph nodes of GIPL-treated mice have an increase in the percentage of T and B cells expressing the CD69 activation marker. Cell-transfer experiments demonstrate that T and B cell activation by GIPL is an indirect effect, which relies on the expression of TLR4 by other cell types. Moreover, although signaling through TNFRI contributes to the activation of B and gammadelta+ T cells, it is not required for increasing CD69 expression on alphabeta+ T lymphocytes. It is interesting that T cells are also functionally affected by GIPL treatment, as spleen cells from GIPL-injected mice show enhanced production of IL-4 following in vitro stimulation by anti-CD3. Together, these results contribute to the understanding of the inflammatory properties of the GIPL molecule, pointing to its potential role as a parasite-derived modulator of the immune response during T. cruzi infection.


Assuntos
Glicolipídeos/fisiologia , Mediadores da Inflamação/fisiologia , Fosfolipídeos/fisiologia , Receptor 4 Toll-Like/metabolismo , Trypanosoma cruzi/imunologia , Animais , Antígenos CD1/genética , Antígenos CD1/fisiologia , Antígenos CD1d , Quimiocina CXCL2 , Quimiocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Glicolipídeos/administração & dosagem , Glicolipídeos/farmacologia , Imunidade Inata/genética , Interleucina-1beta/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Fosfolipídeos/administração & dosagem , Fosfolipídeos/farmacologia , RNA Mensageiro/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Linfócitos T/metabolismo , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/metabolismo
19.
Front Microbiol ; 9: 205, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491856

RESUMO

Chagas disease is a neglected disease caused by the protozoan Trypanosoma cruzi and affects 8 million people worldwide. The main chemotherapy is based on benznidazole. The efficacy in the treatment depends on factors such as the parasite strain, which may present different sensitivity to treatment. In this context, the expression of ABC transporters has been related to chemotherapy failure. ABC transporters share a well-conserved ABC domain, responsible for ATP binding and hydrolysis, whose the energy released is coupled to transport of molecules through membranes. The most known ABC transporters are ABCB1 and ABCC1, involved in the multidrug resistance phenotype in cancer, given their participation in cellular detoxification. In T. cruzi, 27 ABC genes were identified in the genome. Nonetheless, only four ABC genes were characterized: ABCA3, involved in vesicular trafficking; ABCG1, overexpressed in strains naturally resistant to benznidazole, and P-glycoprotein 1 and 2, whose participation in drug resistance is controversial. Considering P-glycoprotein genes are related to ABCC subfamily in T. cruzi according to the demonstration using BLASTP alignment, we evaluated both ABCB1-like and ABCC-like activities in epimastigote and trypomastigote forms of the Y strain. The transport activities were evaluated by the efflux of the fluorescent dyes Rhodamine 123 and Carboxyfluorescein in a flow cytometer. Results indicated that there was no ABCB1-like activity in both T. cruzi forms. Conversely, results demonstrated ABCC-like activity in both epimastigote and trypomastigote forms of T. cruzi. This activity was inhibited by ABCC transport modulators (probenecid, indomethacin, and MK-571), by ATP-depleting agents (sodium azide and iodoacetic acid) and by the thiol-depleting agent N-ethylmaleimide. Additionally, the presence of ABCC-like activity was supported by direct inhibition of the thiol-conjugated compound efflux with indomethacin, characteristic of ABCC subfamily members. Taken together, the results provide the first description of native ABCC-like activity in T. cruzi epimastigote and trypomastigote forms, indicating that the study of the biological role for that thiol transporter is crucial to reveal new molecular mechanisms for therapeutic approaches in the Chagas disease.

20.
Front Microbiol ; 8: 1307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744279

RESUMO

Trans-sialidase from Trypanosoma cruzi (Tc-TS) belongs to a superfamily of proteins that may have enzymatic activity. While enzymatically active members (Tc-aTS) are able to transfer sialic acid from the host cell sialyl-glycoconjugates onto the parasite or to other molecules on the host cell surface, the inactive members (Tc-iTS) are characterized by their lectinic properties. Over the last 10 years, several papers demonstrated that, individually, Tc-aTS or Tc-iTS is able to modulate several biological events. Since the genes encoding Tc-iTS and Tc-aTS are present in the same copy number, and both proteins portray similar substrate-specificities as well, it would be plausible to speculate that such molecules may compete for the same sialyl-glycan structures and govern numerous immunobiological phenomena. However, their combined effect has never been evaluated in the course of an acute infection. In this study, we investigated the ability of both proteins to modulate the production of inflammatory signals, as well as the homing of T cells to the cardiac tissue of infected mice, events that usually occur during the acute phase of T. cruzi infection. The results showed that the intravenous administration of Tc-iTS, but not Tc-aTS protected the cardiac tissue from injury caused by reduced traffic of inflammatory cells. In addition, the ability of Tc-aTS to modulate the production of inflammatory cytokines was attenuated and/or compromised when Tc-iTS was co-injected in the same proportions. These results suggest that although both proteins present structural similarities and compete for the same sialyl-glycan epitopes, they might present distinct immunomodulatory properties on T cells following T. cruzi infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA