Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34654749

RESUMO

The term "de-etiolation" refers to the light-dependent differentiation of etioplasts to chloroplasts in angiosperms. The underlying process involves reorganization of prolamellar bodies (PLBs) and prothylakoids into thylakoids, with concurrent changes in protein, lipid, and pigment composition, which together lead to the assembly of active photosynthetic complexes. Despite the highly conserved structure of PLBs among land plants, the processes that mediate PLB maintenance and their disassembly during de-etiolation are poorly understood. Among chloroplast thylakoid membrane-localized proteins, to date, only Curvature thylakoid 1 (CURT1) proteins were shown to exhibit intrinsic membrane-bending capacity. Here, we show that CURT1 proteins, which play a critical role in grana margin architecture and thylakoid plasticity, also participate in de-etiolation and modulate PLB geometry and density. Lack of CURT1 proteins severely perturbs PLB organization and vesicle fusion, leading to reduced accumulation of the light-dependent enzyme protochlorophyllide oxidoreductase (LPOR) and a delay in the onset of photosynthesis. In contrast, overexpression of CURT1A induces excessive bending of PLB membranes, which upon illumination show retarded disassembly and concomitant overaccumulation of LPOR, though without affecting greening or the establishment of photosynthesis. We conclude that CURT1 proteins contribute to the maintenance of the paracrystalline PLB morphology and are necessary for efficient and organized thylakoid membrane maturation during de-etiolation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tilacoides/metabolismo , Arabidopsis/fisiologia , Clorofila/metabolismo , Microscopia Eletrônica/métodos , Fotossíntese
2.
Plant Physiol ; 189(1): 49-65, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139220

RESUMO

The endoplasmic reticulum (ER)-located ATP/ADP-antiporter (ER-ANT1) occurs specifically in vascular plants. Structurally different transporters mediate energy provision to the ER, but the cellular function of ER-ANT1 is still unknown. Arabidopsis (Arabidopsis thaliana) mutants lacking ER-ANT1 (er-ant1 plants) exhibit a photorespiratory phenotype accompanied by high glycine levels and stunted growth, pointing to an inhibition of glycine decarboxylase (GDC). To reveal whether it is possible to suppress this marked phenotype, we exploited the power of a forward genetic screen. Absence of a so far uncharacterized member of the HaloAcid Dehalogenase (HAD)-like hydrolase family strongly suppressed the dwarf phenotype of er-ant1 plants. Localization studies suggested that the corresponding protein locates to chloroplasts, and activity assays showed that the enzyme dephosphorylates, with high substrate affinity, the B6 vitamer pyridoxal 5'-phosphate (PLP). Additional physiological experiments identified imbalances in vitamin B6 homeostasis in er-ant1 mutants. Our data suggest that impaired chloroplast metabolism, but not decreased GDC activity, causes the er-ant1 mutant dwarf phenotype. We present a hypothesis, setting transport of PLP by ER-ANT1 and chloroplastic PLP dephosphorylation in the cellular context. With the identification of this HAD-type PLP phosphatase, we also provide insight into B6 vitamer homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfato de Piridoxal/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(26): 15354-15362, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541018

RESUMO

In photosynthetic electron transport, large multiprotein complexes are connected by small diffusible electron carriers, the mobility of which is challenged by macromolecular crowding. For thylakoid membranes of higher plants, a long-standing question has been which of the two mobile electron carriers, plastoquinone or plastocyanin, mediates electron transport from stacked grana thylakoids where photosystem II (PSII) is localized to distant unstacked regions of the thylakoids that harbor PSI. Here, we confirm that plastocyanin is the long-range electron carrier by employing mutants with different grana diameters. Furthermore, our results explain why higher plants have a narrow range of grana diameters since a larger diffusion distance for plastocyanin would jeopardize the efficiency of electron transport. In the light of recent findings that the lumen of thylakoids, which forms the diffusion space of plastocyanin, undergoes dynamic swelling/shrinkage, this study demonstrates that plastocyanin diffusion is a crucial regulatory element of plant photosynthetic electron transport.


Assuntos
Magnoliopsida/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Plastocianina/metabolismo , Simulação por Computador , Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos
4.
Ann Bot ; 129(1): 37-52, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34549262

RESUMO

BACKGROUND AND AIMS: ATP-dependent phosphofructokinases (PFKs) catalyse phosphorylation of the carbon-1 position of fructose-6-phosphate, to form fructose-1,6-bisphosphate. In the cytosol, this is considered a key step in channelling carbon into glycolysis. Arabidopsis thaliana has seven genes encoding PFK isoforms, two chloroplastic and five cytosolic. This study focuses on the four major cytosolic isoforms of PFK in vegetative tissues of A. thaliana. METHODS: We isolated homozygous knockout individual mutants (pfk1, pfk3, pfk6 and pfk7) and two double mutants (pfk1/7 and pfk3/6), and characterized their growth and metabolic phenotypes. KEY RESULTS: In contrast to single mutants and the double mutant pfk3/6 for the hypoxia-responsive isoforms, the double mutant pfk1/7 had reduced PFK activity and showed a clear visual and metabolic phenotype with reduced shoot growth, early flowering and elevated hexose levels. This mutant also has an altered ratio of short/long aliphatic glucosinolates and an altered root-shoot distribution. Surprisingly, this mutant does not show any major changes in short-term carbon flux and in levels of hexose-phosphates. CONCLUSIONS: We conclude that the two isoforms PFK1 and PFK7 are important for sugar homeostasis in leaf metabolism and apparently in source-sink relationships in A. thaliana, while PFK3 and PFK6 only play a minor role under normal growth conditions.


Assuntos
Arabidopsis , Fosfofrutoquinases , Folhas de Planta/enzimologia , Açúcares , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citosol/enzimologia , Homeostase , Fosfofrutoquinases/genética , Fosfofrutoquinases/metabolismo , Açúcares/metabolismo
5.
Mol Cell ; 49(3): 511-23, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23290914

RESUMO

During plant photosynthesis, photosystems I (PSI) and II (PSII), located in the thylakoid membranes of the chloroplast, use light energy to mobilize electron transport. Different modes of electron flow exist. Linear electron flow is driven by both photosystems and generates ATP and NADPH, whereas cyclic electron flow (CEF) is driven by PSI alone and generates ATP only. Two variants of CEF exist in flowering plants, of which one is sensitive to antimycin A (AA) and involves the two thylakoid proteins, PGR5 and PGRL1. However, neither the mechanism nor the site of reinjection of electrons from ferredoxin into the thylakoid electron transport chain during AA-sensitive CEF is known. Here, we show that PGRL1 accepts electrons from ferredoxin in a PGR5-dependent manner and reduces quinones in an AA-sensitive fashion. PGRL1 activity itself requires several redox-active cysteine residues and a Fe-containing cofactor. We therefore propose that PGRL1 is the elusive ferredoxin-plastoquinone reductase (FQR).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Ferredoxinas/metabolismo , Proteínas de Membrana/metabolismo , Fotossíntese , Quinona Redutases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Sequência Conservada , Cisteína/metabolismo , Transporte de Elétrons , Ferro/metabolismo , Proteínas de Membrana/química , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Tiorredoxinas/metabolismo , Tilacoides/metabolismo
6.
Plant Physiol ; 181(4): 1615-1631, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31615849

RESUMO

Thylakoid membranes in land plant chloroplasts are organized into appressed and nonappressed membranes, which contribute to the control of energy distribution between the two photosystems (PSI and PSII) from the associated light-harvesting complexes (LHCs). Under fluctuating light conditions, fast reversible phosphorylation of the N-terminal thylakoid protein domains and changes in electrostatic forces induce modifications in thylakoid organization. To gain insight into the role and dynamics of thylakoid protein phosphorylation, we used targeted proteomics to quantify amounts of the structural proteins CURVATURE THYLAKOID1 (CURT1), including the levels of CURT1B N terminus phosphorylation and acetylation, after short-term fluctuating light treatments of Arabidopsis (Arabidopsis thaliana). The CURT1B protein was localized to a specific curvature domain separated from the margin domain, and specifically depleted of chlorophyll-binding protein complexes. The acetylation and phosphorylation of the CURT1B N terminus were mutually exclusive. The level of CURT1B phosphorylation, but not of acetylation, increased upon light shifts that also led to an increase in PSII core protein phosphorylation. These dynamics were largely absent in the knockout mutant of PSII core protein kinase SER/THR PROTEIN KINASE8 (STN8). Moreover, in mutants impaired in interaction between phosphorylated LHCII and PSI, the phosphorylation dynamics of CURT1B and the amount of the other CURT1 proteins were misregulated, indicating a functional interaction between CURT1B and PSI-LHCII complexes in grana margins. The complex relationships between phosphorylation of PSII, LHCII, and CURT1B support the dynamics of thylakoid protein complexes that are crucial in the optimization of photosynthesis under fluctuating light intensities.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Acetilação , Alanina/metabolismo , Proteínas de Arabidopsis/química , Clorofila/metabolismo , Proteínas de Ligação a DNA/química , Luz , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Biológicos , Fosforilação , Fosfotreonina/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema II/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/metabolismo
7.
Physiol Plant ; 169(4): 586-599, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32096870

RESUMO

Stable genetic transformation of plants is a low-efficiency process, and identification of positive transformants usually relies on screening for expression of a co-transformed marker gene. Often this involves germinating seeds on solid media containing a selection reagent. Germination on solid media requires surface sterilization of seeds and careful aseptic technique to prevent microbial contamination, but surface sterilization techniques are time consuming and can cause seed mortality if not performed carefully. We developed an antimicrobial cocktail that can be added to solid media to inhibit bacterial and fungal growth without impairing germination, allowing us to bypass the surface sterilization step. Adding a combination of terbinafine (1 µM) and timentin (200 mg l-1 ) to Murashige and Skoog agar delayed the onset of observable microbial growth and did not affect germination of non-sterile seeds from 10 different wild-type and mutant Arabidopsis thaliana accessions. We named this antimicrobial solid medium "MSTT agar". Seedlings sown in non-sterile conditions could be maintained on MSTT agar for up to a week without observable contamination. This medium was compatible with rapid screening methods for hygromycin B, phosphinothricin (BASTA) and nourseothricin resistance genes, meaning that positive transformants can be identified from non-sterile seeds in as little as 4 days after stratification, and transferred to soil before the onset of visible microbial contamination. By using MSTT agar we were able to select genetic transformants on solid media without seed surface sterilization, eliminating a tedious and time-consuming step.


Assuntos
Anti-Infecciosos/farmacologia , Proteínas de Arabidopsis , Arabidopsis/genética , Germinação , Sementes/efeitos dos fármacos
8.
Plant Physiol ; 177(1): 271-284, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29540590

RESUMO

Phosphorus (P) is an essential macronutrient, and P deficiency limits plant productivity. Recent work showed that P deficiency affects electron transport to photosystem I (PSI), but the underlying mechanisms are unknown. Here, we present a comprehensive biological model describing how P deficiency disrupts the photosynthetic machinery and the electron transport chain through a series of sequential events in barley (Hordeum vulgare). P deficiency reduces the orthophosphate concentration in the chloroplast stroma to levels that inhibit ATP synthase activity. Consequently, protons accumulate in the thylakoids and cause lumen acidification, which inhibits linear electron flow. Limited plastoquinol oxidation retards electron transport to the cytochrome b6f complex, yet the electron transfer rate of PSI is increased under steady-state growth light and is limited under high-light conditions. Under P deficiency, the enhanced electron flow through PSI increases the levels of NADPH, whereas ATP production remains restricted and, hence, reduces CO2 fixation. In parallel, lumen acidification activates the energy-dependent quenching component of the nonphotochemical quenching mechanism and prevents the overexcitation of photosystem II and damage to the leaf tissue. Consequently, plants can be severely affected by P deficiency for weeks without displaying any visual leaf symptoms. All of the processes in the photosynthetic machinery influenced by P deficiency appear to be fully reversible and can be restored in less than 60 min after resupply of orthophosphate to the leaf tissue.


Assuntos
Fósforo/deficiência , Fotossíntese , Complexos de ATP Sintetase/metabolismo , Trifosfato de Adenosina/metabolismo , Clorofila A/metabolismo , Transporte de Elétrons/efeitos da radiação , Fluorescência , Hordeum/crescimento & desenvolvimento , Hordeum/efeitos da radiação , Cinética , NADP/metabolismo , Oxirredução , Fósforo/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Plastoquinona/metabolismo
9.
Plant Physiol ; 176(3): 2351-2364, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29374108

RESUMO

The thylakoid membrane system of higher plant chloroplasts consists of interconnected subdomains of appressed and nonappressed membrane bilayers, known as grana and stroma lamellae, respectively. CURVATURE THYLAKOID1 (CURT1) protein complexes mediate the shape of grana stacks in a dosage-dependent manner and facilitate membrane curvature at the grana margins, the interface between grana and stroma lamellae. Although grana stacks are highly conserved among land plants, the functional relevance of grana stacking remains unclear. Here, we show that inhibiting CURT1-mediated alteration of thylakoid ultrastructure in Arabidopsis (Arabidopsis thaliana) reduces photosynthetic efficiency and plant fitness under adverse, controlled, and natural light conditions. Plants that lack CURT1 show less adjustment of grana diameter, which compromises regulatory mechanisms like the photosystem II repair cycle and state transitions. Interestingly, CURT1A suffices to induce thylakoid membrane curvature in planta and thylakoid hyperbending in plants overexpressing CURT1A. We suggest that CURT1 oligomerization is regulated at the posttranslational level in a light-dependent fashion and that CURT1-mediated thylakoid plasticity plays an important role in fine-tuning photosynthesis and plant fitness during challenging growth conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Cloroplastos/metabolismo , Proteínas de Membrana/metabolismo , Fotossíntese/fisiologia , Tilacoides/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Cloroplastos/genética , Luz , Proteínas de Membrana/genética , Mutação , Processamento de Proteína Pós-Traducional , Sementes/fisiologia
10.
Plant Physiol ; 170(3): 1817-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26823545

RESUMO

Developmental or metabolic changes in chloroplasts can have profound effects on the rest of the plant cell. Such intracellular responses are associated with signals that originate in chloroplasts and convey information on their physiological status to the nucleus, which leads to large-scale changes in gene expression (retrograde signaling). A screen designed to identify components of retrograde signaling resulted in the discovery of the so-called genomes uncoupled (gun) mutants. Genetic evidence suggests that the chloroplast protein GUN1 integrates signals derived from perturbations in plastid redox state, plastid gene expression, and tetrapyrrole biosynthesis (TPB) in Arabidopsis (Arabidopsis thaliana) seedlings, exerting biogenic control of chloroplast functions. However, the molecular mechanism by which GUN1 integrates retrograde signaling in the chloroplast is unclear. Here we show that GUN1 also operates in adult plants, contributing to operational control of chloroplasts. The gun1 mutation genetically interacts with mutations of genes for the chloroplast ribosomal proteins S1 (PRPS1) and L11. Analysis of gun1 prps1 lines indicates that GUN1 controls PRPS1 accumulation at the protein level. The GUN1 protein physically interacts with proteins involved in chloroplast protein homeostasis based on coimmunoprecipitation experiments. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments suggest that GUN1 might transiently interact with several TPB enzymes, including Mg-chelatase subunit D (CHLD) and two other TPB enzymes known to activate retrograde signaling. Moreover, the association of PRPS1 and CHLD with protein complexes is modulated by GUN1. These findings allow us to speculate that retrograde signaling might involve GUN1-dependent formation of protein complexes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Homeostase , Proteínas Ribossômicas/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Proteínas de Ligação a DNA/genética , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Immunoblotting , Liases/genética , Liases/metabolismo , Mutação , Plantas Geneticamente Modificadas , Plastídeos/genética , Plastídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos , Tetrapirróis/biossíntese
11.
Metab Eng ; 33: 1-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26548317

RESUMO

Solar energy provides the energy input for the biosynthesis of primary and secondary metabolites in plants and other photosynthetic organisms. Some secondary metabolites are high value compounds, and typically their biosynthesis requires the involvement of cytochromes P450s. In this proof of concept work, we demonstrate that the cyanobacterium Synechocystis sp. PCC 6803 is an eminent heterologous host for expression of metabolically engineered cytochrome P450-dependent pathways exemplified by the dhurrin pathway from Sorghum bicolor comprising two membrane bound cytochromes P450s (CYP79A1 and CYP71E1) and a soluble glycosyltransferase (UGT85B1). We show that it is possible to express multiple genes incorporated into a bacterial-like operon by using a self-replicating expression vector in cyanobacteria. We demonstrate that eukaryotic P450s that typically reside in the endoplasmic reticulum membranes can be inserted in the prokaryotic membranes without affecting thylakoid membrane integrity. Photosystem I and ferredoxin replaces the native P450 oxidoreductase enzyme as an efficient electron donor for the P450s both in vitro and in vivo. The engineered strains produced up to 66mg/L of p-hydroxyphenylacetaldoxime and 5mg/L of dhurrin in lab-scale cultures after 3 days of cultivation and 3mg/L of dhurrin in V-shaped photobioreactors under greenhouse conditions after 9 days cultivation. All the metabolites were found to be excreted to the growth media facilitating product isolation.


Assuntos
Proteínas de Bactérias/genética , Reatores Biológicos/microbiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia Metabólica/métodos , Transdução de Sinais/fisiologia , Synechocystis/fisiologia , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Luz , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Doses de Radiação , Synechocystis/efeitos da radiação
12.
J Exp Bot ; 67(8): 2495-506, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26969746

RESUMO

Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons.


Assuntos
Vias Biossintéticas , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Sistema Enzimático do Citocromo P-450/metabolismo , Luz , Nicotiana/genética , Nitrilas/metabolismo , Sorghum/enzimologia , Biomassa , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , Cloroplastos/ultraestrutura , Cromatografia Líquida , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Genoma de Cloroplastos , Genoma de Planta , Glucosídeos/metabolismo , Espectrometria de Massas , Óperon/genética , Fenótipo , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas , Subunidades Proteicas/metabolismo , Transformação Genética/efeitos da radiação
13.
Plant Cell ; 25(7): 2661-78, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23839788

RESUMO

Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Immunoblotting , Membranas Intracelulares/ultraestrutura , Lipídeos/análise , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutação , Fosforilação , Fotossíntese , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteolipídeos/metabolismo , Proteolipídeos/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Tilacoides/ultraestrutura
14.
Plant J ; 75(4): 671-84, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23647309

RESUMO

The oxygen-evolving complex of eukaryotic photosystem II (PSII) consists of four extrinsic subunits, PsbO (33 kDa), PsbP (23 kDa), PsbQ (17 kDa) and PsbR (10 kDa), encoded by seven nuclear genes, PsbO1 (At5g66570), PsbO2 (At3g50820), PsbP1 (At1g06680), PsbP2 (At2g30790), PsbQ1 (At4g21280), PsbQ2 (At4g05180) and PsbR (At1g79040). Using Arabidopsis insertion mutant lines, we show that PsbP1, but not PsbP2, is essential for photoautotrophic growth, whereas plants lacking both forms of PsbQ and/or PsbR show normal growth rates. Complete elimination of PsbQ has a minor effect on PSII function, but plants lacking PsbR or both PsbR and PsbQ are characterized by more pronounced defects in PSII activity. Gene expression and immunoblot analyses indicate that accumulation of each of these proteins is highly dependent on the presence of the others, and is controlled at the post-transcriptional level, whereas PsbO stability appears to be less sensitive to depletion of other subunits of the oxygen-evolving complex. In addition, comparison of levels of the PSII super-complex in wild-type and mutant leaves reveals the importance of the individual subunits of the oxygen-evolving complex for the supramolecular organization of PSII and their influence on the rate of state transitions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Biomassa , Fenótipo , Fosforilação , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Plantas Geneticamente Modificadas , Tilacoides/metabolismo
15.
J Exp Bot ; 65(8): 1955-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24622954

RESUMO

Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.


Assuntos
Embriófitas/fisiologia , Embriófitas/ultraestrutura , Tilacoides/fisiologia , Tilacoides/ultraestrutura , Embriófitas/crescimento & desenvolvimento , Organogênese Vegetal
16.
Plant J ; 72(6): 922-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22900828

RESUMO

A lack of individual plastid ribosomal proteins (PRPs) can have diverse phenotypic effects in Arabidopsis thaliana, ranging from embryo lethality to compromised vitality, with the latter being associated with photosynthetic lesions and decreases in the expression of plastid proteins. In this study, reverse genetics was employed to study the function of eight PRPs, five of which (PRPS1, -S20, -L27, -L28 and -L35) have not been functionally characterised before. In the case of PRPS17, only leaky alleles or RNA interference lines had been analysed previously. PRPL1 and PRPL4 have been described as essential for embryo development, but their mutant phenotypes are analysed in detail here. We found that PRPS20, -L1, -L4, -L27 and -L35 are required for basal ribosome activity, which becomes crucial at the globular stage and during the transition from the globular to the heart stage of embryogenesis. Thus, lack of any of these PRPs leads to alterations in cell division patterns, and embryo development ceases prior to the heart stage. PRPL28 is essential at the latest stages of embryo-seedling development, during the greening process. PRPS1, -S17 and -L24 appear not to be required for basal ribosome activity and the organism can complete its entire life cycle in their absence. Interestingly, despite the prokaryotic origin of plastids, the significance of individual PRPs for plant development cannot be predicted from the relative phenotypic severity of the corresponding mutants in prokaryotic systems.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Proteínas de Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Ribossômicas/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Proteínas de Cloroplastos/genética , Mutagênese Insercional , Fenótipo , Fotossíntese , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Genética Reversa , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Plântula/embriologia , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/embriologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
17.
Planta ; 237(2): 541-58, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23086342

RESUMO

Reversible phosphorylation of LHCII, the light-harvesting complex of photosystem II, controls its migration between the two photosystems (state transitions), and serves to adapt the photosynthetic machinery of plants and green algae to short-term changes in ambient light conditions. The thylakoid kinase STN7 is required for LHCII phosphorylation and state transitions in vascular plants. Regulation of STN7 levels occurs at the post-translational level, depends on the thylakoid redox state, and might involve reversible autophosphorylation. Here, we have analysed the effects of different light conditions and chemical inhibitors on the abundance of STN7 transcripts and their products. This analysis was performed in wild-type Arabidopsis thaliana plants, in several photosynthetic mutants, and in lines overexpressing STN7 (oeSTN7) or expressing mutant variants of STN7 carrying single or double cysteine-serine exchanges. It was found that accumulation of the STN7 protein is also controlled at the level of transcript abundance. Under certain conditions, exposure to high light or far-red light treatment, the relative decreases in LHCII phosphorylation can be attributed to decreases in STN7 abundance. Nevertheless, inhibitor experiments showed that redox control of LHCII kinase activity persists in oeSTN7 plants. STN7 dimers were found in oeSTN7 plants and in lines with single cysteine-serine exchanges, indicating that dimerisation involves disulphide bridges. We speculate that transient STN7 dimerisation is required for STN7 activity, and that the altered dimerisation behaviour of oeSTN7 plants might be responsible for the unusually high phosphorylation of LHCII in the dark found in this genotype.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Multimerização Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/antagonistas & inibidores , Cisteína/metabolismo , Complexo Citocromos b6f/genética , Complexo Citocromos b6f/metabolismo , Dissulfetos/metabolismo , Ditiotreitol , Diurona , Ativação Enzimática , Luz , Complexos de Proteínas Captadores de Luz , Oxirredução , Fosforilação , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/metabolismo , Fatores de Tempo
18.
Planta ; 237(2): 637-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23212214

RESUMO

Glaucophytes represent the first lineage of photosynthetic eukaryotes of primary endosymbiotic origin that diverged after plastid establishment. The muroplast of Cyanophora paradoxa represents a primitive plastid that resembles its cyanobacterial ancestor in pigment composition and the presence of a peptidoglycan wall. To attain insights into the evolutionary history of cyanobiont integration and plastid development, it would thus be highly desirable to obtain knowledge on the composition of the glaucophyte plastid proteome. Here, we provide the first proteomic analysis of the muroplast of C. paradoxa. Mass spectrometric analysis of the muroplast proteome identified 510 proteins with high confidence. The protein repertoire of the muroplast revealed novel paths for reduced carbon flow and export to the cytosol through a sugar phosphate transporter of chlamydial origin. We propose that C. paradoxa possesses a primordial plastid mirroring the situation in the early protoalga.


Assuntos
Evolução Biológica , Cyanophora/metabolismo , Plastídeos/metabolismo , Proteoma/análise , Simbiose , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Carbono/metabolismo , Clonagem Molecular , Cyanophora/genética , Citosol/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastídeos/genética , Transporte Proteico , Proteômica/métodos , Protoplastos/citologia , Protoplastos/metabolismo , Espectrometria de Massas em Tandem , Nicotiana/genética , Nicotiana/metabolismo , Transformação Genética
19.
PLoS Biol ; 8(1): e1000288, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20126264

RESUMO

Short-term changes in illumination elicit alterations in thylakoid protein phosphorylation and reorganization of the photosynthetic machinery. Phosphorylation of LHCII, the light-harvesting complex of photosystem II, facilitates its relocation to photosystem I and permits excitation energy redistribution between the photosystems (state transitions). The protein kinase STN7 is required for LHCII phosphorylation and state transitions in the flowering plant Arabidopsis thaliana. LHCII phosphorylation is reversible, but extensive efforts to identify the protein phosphatase(s) that dephosphorylate LHCII have been unsuccessful. Here, we show that the thylakoid-associated phosphatase TAP38 is required for LHCII dephosphorylation and for the transition from state 2 to state 1 in A. thaliana. In tap38 mutants, thylakoid electron flow is enhanced, resulting in more rapid growth under constant low-light regimes. TAP38 gene overexpression markedly decreases LHCII phosphorylation and inhibits state 1-->2 transition, thus mimicking the stn7 phenotype. Furthermore, the recombinant TAP38 protein is able, in an in vitro assay, to directly dephosphorylate LHCII. The dependence of LHCII dephosphorylation upon TAP38 dosage, together with the in vitro TAP38-mediated dephosphorylation of LHCII, suggests that TAP38 directly acts on LHCII. Although reversible phosphorylation of LHCII and state transitions are crucial for plant fitness under natural light conditions, LHCII hyperphosphorylation associated with an arrest of photosynthesis in state 2 due to inactivation of TAP38 improves photosynthetic performance and plant growth under state 2-favoring light conditions.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Transporte de Elétrons/fisiologia , Complexos de Proteínas Captadores de Luz/metabolismo , Fosfoproteínas Fosfatases/fisiologia , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Luz , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosforilação , Fotossíntese , Alinhamento de Sequência
20.
Nat Commun ; 14(1): 3023, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230969

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major catalyst in the conversion of carbon dioxide into organic compounds in photosynthetic organisms. However, its activity is impaired by binding of inhibitory sugars such as xylulose-1,5-bisphosphate (XuBP), which must be detached from the active sites by Rubisco activase. Here, we show that loss of two phosphatases in Arabidopsis thaliana has detrimental effects on plant growth and photosynthesis and that this effect could be reversed by introducing the XuBP phosphatase from Rhodobacter sphaeroides. Biochemical analyses revealed that the plant enzymes specifically dephosphorylate XuBP, thus allowing xylulose-5-phosphate to enter the Calvin-Benson-Bassham cycle. Our findings demonstrate the physiological importance of an ancient metabolite damage-repair system in degradation of by-products of Rubisco, and will impact efforts to optimize carbon fixation in photosynthetic organisms.


Assuntos
Fotossíntese , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Dióxido de Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA