Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Soc Rev ; 51(24): 10083-10119, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36416191

RESUMO

Inspired by natural mobile microorganisms, researchers have developed micro/nanomotors (MNMs) that can autonomously move by transducing different kinds of energies into kinetic energy. The rapid development of MNMs has created tremendous opportunities for biomedical fields including diagnostics, therapeutics, and theranostics. Although the great progress has been made in MNM research, at a fundamental level, the accepted propulsion mechanisms are still a controversial matter. In practical applications such as precision nanomedicine, the precise control of the motion, including the speed and directionality, of MNMs is also important, which makes advanced motion manipulation desirable. Very recently, diverse MNMs with different propulsion strategies, morphologies, sizes, porosities and chemical structures have been fabricated and applied for various uses. Herein, we thoroughly summarize the physical principles behind propulsion strategies, as well as the recent advances in motion manipulation methods and relevant biomedical applications of these MNMs. The current challenges in MNM research are also discussed. We hope this review can provide a bird's eye overview of the MNM research and inspire researchers to create novel and more powerful MNMs.


Assuntos
Nanoestruturas , Nanotecnologia , Nanoestruturas/química , Nanomedicina , Movimento (Física)
2.
Small ; 17(9): e1906250, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32406190

RESUMO

Heterogeneous hydrogenation reactions are of great importance for chemical upgrading and synthesis, but still face the challenges of controlling selectivity and long-term stability. To improve the catalytic performance, many hydrogenation reactions utilize special yolk/core-shell nanoreactors (YCSNs) with unique architectures and advantageous properties. This work presents the developmental and technological challenges in the preparation of YCSNs that are potentially useful for hydrogenation reactions, and provides a summary of the properties of these materials. The work also addresses the scientific challenges in applications of these YCSNs in various gas and liquid-phase hydrogenation reactions. The catalyst structures, catalytic performance, structure-performance relationships, reaction mechanisms, and unsolved problems are discussed too. Also, a brief outlook and opportunities for future research in this field are presented. This work on the advancements in YCSNs might inspire the creation of new materials with desired structures for achieving maximal hydrogenation performances.


Assuntos
Nanotecnologia , Catálise , Hidrogenação
3.
Small ; 17(33): e2101271, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34254441

RESUMO

Nitrogen-doped nanocarbons are widely used as supports for metal-heterogeneous catalytic conversions. When nitrogen-doped nanocarbon supports are used to disperse metallic nanoparticles (MNPs), the nitrogen dopant can enhance MNPs electron density to reach higher catalytic activity and promote MNPs stability through anchoring effects. However, the precise identification of active nitrogen species between N-dopants and reactants is rarely reported. Herein, a proof-of-concept study on the active N species for levulinic acid hydrogenation is reported. A double-shell structured carbon catalyst (DSC) is designed with selectively locating ultrafine Ru NPs only on inner carbon shell, specifically, different N species on the external carbon shell. Through the design of such a nanostructure, it is demonstrated that the alkaline pyridinic N species on the outer shell serves as an anchor point for the spontaneous binding of the acidic reactant. The pyridinic N content can be modulated from 7.4 to 29.2 mg gcat-1 by selecting different precursors. Finally, the Ru-DSC-CTS (using chitosan as the precursor) catalyst achieves a 99% conversion of levulinic acid under 70 °C and 4 MPa hydrogen pressure for 1 h. This work sheds light on the design of nanoreactors at the atomic scale and investigates heterogeneous catalysis at the molecular level.


Assuntos
Ácidos Levulínicos , Nitrogênio , Hidrogenação , Nanotecnologia
4.
Small ; 17(49): e2103224, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34611983

RESUMO

Photocatalysis offers a sustainable strategy for hydrogen peroxide (H2 O2 ) production, which is an essential oxidant and emerging energy carrier in modern chemical industry. The development of polymer-based photocatalysts to produce H2 O2 has great potential but is limited by lower efficiency due to the limitation of light utilization and the low charge separation efficiency. Herein, a series of monodispersed mesoporous resorcinol-formaldehyde resin spheres (MRFS) are reported with a rational designed spatial charge distribution, exhibiting wide light absorption with a solar-to-chemical conversion (SCC) efficiency of 1.1%. Surface photovoltage microscopy (SPVM) measurements unraveled the charge separation in nanospace with uneven distribution of donor (D) and acceptor (A) sites. A density functional theory (DFT) calculation elucidated the origin of photogenerated electrons and holes. Moreover, MRFS demonstrates photocatalytic water oxidation ability. The findings in this work open a new avenue for the development of porous polymeric photocatalysts toward highly efficient solar energy conversion.

5.
Adv Mater ; 34(43): e2205153, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35999183

RESUMO

Hollow nanostructures with fascinating properties have inspired numerous interests in broad research fields. Cell-mimicking complex hollow architectures with precise active components distributions are particularly important, while their synthesis remains highly challenging. Herein, a "top-down" chemical surgery strategy is introduced to engrave the 3-aminophenol formaldehyde resin (APF) spheres at nanoscale. Undergoing the cleavage of (Ar)CN bonds with ethanol as chemical scissors and subsequent repolymerization process, the Solid APF transform to multilevel hollow architecture with precise nanospatial distribution of organic functional groups (e.g., hydroxymethyl and amine). The transformation is tracked by electron microscopy and solid-state nuclear magnetic resonance techniques, the category and dosage of alcohol are pivotal for constructing multilevel hollow structures. Moreover, it is demonstrated the evolution of nanostructures accompanied with unique organic microenvironments is able to accurately confine multiple gold (Au) nanoparticles, leading to the formation of pomegranate-like particles. Through selectively depositing palladium (Pd) nanoparticles onto the outer shell, bimetallic Au@APF@Pd catalysts are formed, which exhibit excellent hydrogenation performance with turnover frequency (TOF) value up to 11257 h-1 . This work provides an effective method for precisely manipulating the nanostructure and composition of polymers at nanoscale and sheds light on the design of catalysts with precise spatial active components.

6.
Adv Sci (Weinh) ; 6(22): 1900807, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31763134

RESUMO

It is desirable to design nonprecious metal nanocatalysts with high stability and catalytic performance for fine chemicals production. Here, a method is reported for the preparation of cobalt metal and cobalt oxide cores confined within nanoporous nitrogen-doped hollow carbon capsules. Core-shell structured Zn/Co-ZIF@polymer materials are fabricated through a facile coating polymer strategy on the surface of zeolitic imidazolate frameworks (ZIF). A series of hollow carbon capsules with cobalt metal and cobalt oxide are derived from a facile confined pyrolysis of Zn/Co-ZIF@polymer. The hollow Co-CoOx@N-C capsules can prevent sintering and agglomeration of the cobalt nanoparticles and the nanoporous shell allows for efficient mass transport. The specific surface area and Co particle size are optimized through finely tuning the original Zn content in ZIF particles, thus enhancing overall catalytic activity. The yolk-shell structured Zn4Co1Ox@carbon hollow capsules are shown to be a highly active and selective catalyst (selectivity >99%) for hydrogenation of nitrobenzene to aniline. Furthermore, Zn4Co1Ox@carbon hollow particles show superior catalytic stability, and no deactivation after 8 cycles of reaction. The hollow Co-CoOx@N-C capsules may shed light on a green and sustainable catalytic process for fine chemicals production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA