Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 10: 8, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22233801

RESUMO

BACKGROUND: Bcl-2 is believed to contribute to melanoma chemoresistance. However, expression of Bcl-2 proteins may be different among melanomas. Thus correlations among expression of Bcl-2-related proteins and in vivo melanoma progression, and resistance to combination therapies, was investigated. METHODS: Human A375 melanoma was injected s.c. into immunodeficient nude mice. Protein expression was studied in tumor samples obtained by laser microdisection. Transfection of siRNA or ectopic overexpression were applied to manipulate proteins which are up- or down-regulated, preferentially, during melanoma progression. Anti-bcl-2 antisense oligonucleotides and chemoradiotherapy (glutathione-depleting agents, paclitaxel protein-binding particles, daunorubicin, X rays) were administered in combination. RESULTS: In vivo A375 cells down-regulated pro-apoptotic bax expression; and up-regulated anti-apoptotic bcl-2, bcl-xl, and mcl-1, however only Bcl-2 appeared critical for long-term tumor cell survival and progression in vivo. Reduction of Bcl-2, combined with partial therapies, decreased melanoma growth. But only Bcl-2 targeting plus the full combination of chemoradiotherapy eradicated A375 melanoma, and led to long-term survival (> 120 days) without recurrence in 80% of mice. Tumor regression was not due to immune stimulation. Hematology and clinical chemistry data were within accepted clinical toxicities. CONCLUSION: Strategies to target Bcl-2, may increase the effectiveness of antitumor therapies against melanomas overexpressing Bcl-2 and likely other Bcl-2-related antiapoptotic proteins.


Assuntos
Quimiorradioterapia , Glutationa/metabolismo , Melanoma/terapia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X/metabolismo , Paclitaxel Ligado a Albumina , Albuminas/farmacologia , Albuminas/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citocinas/sangue , Daunorrubicina/farmacologia , Daunorrubicina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Melanoma/sangue , Melanoma/genética , Melanoma/patologia , Camundongos , Camundongos Nus , Proteína de Sequência 1 de Leucemia de Células Mieloides , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Indução de Remissão , Análise de Sobrevida
2.
Mol Cancer Ther ; 7(10): 3330-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18852136

RESUMO

Colorectal cancer is one of the most common malignancies worldwide. The treatment of advanced colorectal cancer with chemotherapy and radiation has two major problems: development of tumor resistance to therapy and nonspecific toxicity towards normal tissues. Different plant-derived polyphenols show anticancer properties and are pharmacologically safe. In vitro growth of human HT-29 colorectal cancer cells is inhibited ( approximately 56%) by bioavailable concentrations of trans-pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene; t-PTER) and quercetin (3,3',4',5,6-pentahydroxyflavone; QUER), two structurally related and naturally occurring small polyphenols. I.v. administration of t-PTER and QUER (20 mg/kg x day) inhibits growth of HT-29 xenografts ( approximately 51%). Combined administration of t-PTER + QUER, FOLFOX6 (oxaliplatin, leucovorin, and 5-fluorouracil; a first-line chemotherapy regimen), and radiotherapy (X-rays) eliminates HT-29 cells growing in vivo leading to long-term survival (>120 days). Gene expression analysis of a Bcl-2 family of genes and antioxidant enzymes revealed that t-PTER + QUER treatment preferentially promotes, in HT-29 cells growing in vivo, (a) superoxide dismutase 2 overexpression ( approximately 5.7-fold, via specificity protein 1-dependent transcription regulation) and (b) down-regulation of bcl-2 expression ( approximately 3.3-fold, via inhibition of nuclear factor-kappaB activation). Antisense oligodeoxynucleotides to human superoxide dismutase 2 and/or ectopic bcl-2 overexpression avoided polyphenols and chemoradiotherapy-induced colorectal cancer elimination and showed that the mangano-type superoxide dismutase and Bcl-2 are key targets in the molecular mechanism activated by the combined application of t-PTER and QUER.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Flavonoides/uso terapêutico , Fenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/toxicidade , Antioxidantes/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Flavonoides/farmacologia , Flavonoides/toxicidade , Perfilação da Expressão Gênica , Células HT29 , Humanos , Camundongos , Camundongos Nus , NF-kappa B/metabolismo , Fenóis/farmacologia , Fenóis/toxicidade , Polifenóis , Fator de Transcrição Sp1/metabolismo , Regulação para Cima/efeitos dos fármacos
3.
Free Radic Biol Med ; 65: 347-359, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23850970

RESUMO

Thioredoxin 1 (Trx1) is a key regulator of cellular redox balance and participates in cellular signaling events. Recent evidence from yeast indicates that members of the Trx family interact with the 20S proteasome, indicating redox regulation of proteasome activity. However, there is little information about the interrelationship of Trx proteins with the proteasome system in mammalian cells, especially in the nucleus. Here, we have investigated this relationship under various cellular conditions in mammalian cells. We show that Trx1 levels and its subcellular localization (cytosol, endoplasmic reticulum, and nucleus) depend on proteasome activity during the cell cycle in NIH3T3 fibroblasts and under stress conditions, when proteasomes are inhibited. In addition, we also studied in these cells how the main cellular antioxidant systems are stimulated when proteasome activity is inhibited. Finally, we describe a reduction in Trx1 levels in Lafora disease fibroblasts and demonstrate that the nuclear colocalization of Trx1 with 20S proteasomes in laforin-deficient cells is altered compared with control cells. Our results indicate a close relationship between Trx1 and the 20S nuclear proteasome and give a new perspective to the study of diseases or physiopathological conditions in which defects in the proteasome system are associated with oxidative stress.


Assuntos
Fibroblastos/metabolismo , Doença de Lafora/metabolismo , Estresse Oxidativo/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Tiorredoxinas/metabolismo , Animais , Western Blotting , Chaperona BiP do Retículo Endoplasmático , Citometria de Fluxo , Humanos , Imunoprecipitação , Camundongos , Microscopia Confocal , Células NIH 3T3 , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
J Biol Chem ; 282(5): 2880-90, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17135264

RESUMO

Intravenous administration to mice of trans-pterostilbene (t-PTER; 3,5-dimethoxy-4'-hydroxystilbene) and quercetin (QUER; 3,3',4',5,6-pentahydroxyflavone), two structurally related and naturally occurring small polyphenols, inhibits metastatic growth of highly malignant B16 melanoma F10 (B16M-F10) cells. t-PTER and QUER inhibit bcl-2 expression in metastatic cells, which sensitizes them to vascular endothelium-induced cytotoxicity. However, the molecular mechanism(s) linking polyphenol signaling and bcl-2 expression are unknown. NO is a potential bioregulator of apoptosis with controversial effects on Bcl-2 regulation. Polyphenols may affect NO generation. Short-term exposure (60 min/day) to t-PTER (40 microM) and QUER (20 microM) (approximate mean values of the plasma concentrations measured within the first hour after intravenous administration of 20 mg of each polyphenol/kg) down-regulated inducible NO synthetase in B16M-F10 cells and up-regulated endothelial NO synthetase in the vascular endothelium and thereby facilitated endothelium-induced tumor cytotoxicity. Very low and high NO levels down-regulated bcl-2 expression in B16M-F10 cells. t-PTER and QUER induced a NO shortage-dependent decrease in cAMP-response element-binding protein phosphorylation, a positive regulator of bcl-2 expression, in B16M-F10 cells. On the other hand, during cancer and endothelial cell interaction, t-PTER- and QUER-induced NO release from the vascular endothelium up-regulated neutral sphingomyelinase activity and ceramide generation in B16M-F10 cells. Direct NO-induced cytotoxicity and ceramide-induced mitochondrial permeability transition and apoptosis activation can explain the increased endothelium-induced death of Bcl-2-depleted B16M-F10 cells.


Assuntos
Morte Celular/efeitos dos fármacos , Regulação para Baixo , Flavonoides/farmacologia , Genes bcl-2 , Óxido Nítrico/fisiologia , Fenóis/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Endotélio Vascular/fisiologia , Endotélio Vascular/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Masculino , Melanoma , Camundongos , Camundongos Endogâmicos C57BL , Membranas Mitocondriais/fisiologia , Metástase Neoplásica , Nitratos/metabolismo , Nitritos/metabolismo , Polifenóis , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA