Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Brain ; 146(12): 4949-4963, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37403195

RESUMO

Learning and memory mainly rely on correct synaptic function in the hippocampus and other brain regions. In Parkinson's disease, subtle cognitive deficits may even precede motor signs early in the disease. Hence, we set out to unravel the earliest hippocampal synaptic alterations associated with human α-synuclein overexpression prior to and soon after the appearance of cognitive deficits in a parkinsonism model. We bilaterally injected adeno-associated viral vectors encoding A53T-mutated human α-synuclein into the substantia nigra of rats, and evaluated them 1, 2, 4 and 16 weeks post-inoculation by immunohistochemistry and immunofluorescence to study degeneration and distribution of α-synuclein in the midbrain and hippocampus. The object location test was used to evaluate hippocampal-dependent memory. Sequential window acquisition of all theoretical mass spectrometry-based proteomics and fluorescence analysis of single-synapse long-term potentiation were used to study alterations to protein composition and plasticity in isolated hippocampal synapses. The effect of L-DOPA and pramipexole on long-term potentiation was also tested. Human α-synuclein was found within dopaminergic and glutamatergic neurons of the ventral tegmental area, and in dopaminergic, glutamatergic and GABAergic axon terminals in the hippocampus from 1 week post-inoculation, concomitant with mild dopaminergic degeneration in the ventral tegmental area. In the hippocampus, differential expression of proteins involved in synaptic vesicle cycling, neurotransmitter release and receptor trafficking, together with impaired long-term potentiation were the first events observed (1 week post-inoculation), preceding cognitive deficits (4 weeks post-inoculation). Later on, at 16 weeks post-inoculation, there was a deregulation of proteins involved in synaptic function, particularly those involved in the regulation of membrane potential, ion balance and receptor signalling. Hippocampal long-term potentiation was impaired before and soon after the onset of cognitive deficits, at 1 and 4 weeks post-inoculation, respectively. L-DOPA recovered hippocampal long-term potentiation more efficiently at 4 weeks post-inoculation than pramipexole, which partially rescued it at both time points. Overall, we found impaired synaptic plasticity and proteome dysregulation at hippocampal terminals to be the first events that contribute to the development of cognitive deficits in experimental parkinsonism. Our results not only point to dopaminergic but also to glutamatergic and GABAergic dysfunction, highlighting the relevance of the three neurotransmitter systems in the ventral tegmental area-hippocampus interaction from the earliest stages of parkinsonism. The proteins identified in the current work may constitute potential biomarkers of early synaptic damage in the hippocampus and hence, therapies targeting these could potentially restore early synaptic malfunction and consequently, cognitive deficits in Parkinson's disease.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Ratos , Animais , alfa-Sinucleína/metabolismo , Levodopa/farmacologia , Pramipexol/farmacologia , Hipocampo/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurotransmissores/metabolismo , Cognição
2.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201769

RESUMO

Hyaluronic acid (HA) and gelatin (Gel) are major components of the extracellular matrix of different tissues, and thus are largely appealing for the construction of hybrid hydrogels to combine the favorable characteristics of each biopolymer, such as the gel adhesiveness of Gel and the better mechanical strength of HA, respectively. However, despite previous studies conducted so far, the relationship between composition and scaffold structure and physico-chemical properties has not been completely and systematically established. In this work, pure and hybrid hydrogels of methacroyl-modified HA (HAMA) and Gel (GelMA) were prepared by UV photopolymerization and an extensive characterization was done to elucidate such correlations. Methacrylation degrees of ca. 40% and 11% for GelMA and HAMA, respectively, were obtained, which allows to improve the hydrogels' mechanical properties. Hybrid GelMA/HAMA hydrogels were stiffer, with elastic modulus up to ca. 30 kPa, and porous (up to 91%) compared with pure GelMA ones at similar GelMA concentrations thanks to the interaction between HAMA and GelMA chains in the polymeric matrix. The progressive presence of HAMA gave rise to scaffolds with more disorganized, stiffer, and less porous structures owing to the net increase of mass in the hydrogel compositions. HAMA also made hybrid hydrogels more swellable and resistant to collagenase biodegradation. Hence, the suitable choice of polymeric composition allows to regulate the hydrogels´ physical properties to look for the most optimal characteristics required for the intended tissue engineering application.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Ácido Hialurônico/química , Hidrogéis/química , Metacrilatos/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Humanos , Polímeros/química
3.
Neurochem Res ; 44(1): 49-60, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29619614

RESUMO

CNS inflammatory responses are linked to cognitive impairment in humans. Research in animal models supports this connection by showing that inflammatory cytokines suppress long-term potentiation (LTP), the best-known cellular correlate of memory. Cytokine-induced modulation of LTP has been previously studied in vivo or in brain slices, two experimental approaches containing multiple cell populations responsive to cytokines. In their target cells, cytokines commonly increase the expression of multiple cytokines, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Whether cytokines suppress LTP by direct effects on neurons or by indirect mechanisms is still an open question. Here, we evaluated the effect of a major set of inflammatory cytokines including tumor necrosis factor-α (TNFα), interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) on chemically-induced LTP (cLTP) in isolated hippocampal synaptosomes of mice, using fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). We found that TNFα and IL-1ß suppress synaptosomal cLTP. In contrast, cLTP was not affected by IL-18, at a concentration previously shown to block LTP in hippocampal slices. We also found that IL-18 does not impair cLTP or brain-derived neurotrophic factor (BDNF) signaling in primary hippocampal neuronal cultures. Thus, using both synaptosomes and neuron cultures, our data suggest that IL-18 impairs LTP by indirect mechanisms, which may depend on non-neuronal cells, such as glia. Notably, our results demonstrate that TNFα and IL-1ß directly suppress hippocampal plasticity via neuron-specific mechanisms. A better understanding of the brain's cytokine networks and their final molecular effectors is crucial to identify specific targets for intervention.


Assuntos
Hipocampo/fisiologia , Interleucina-18/farmacologia , Interleucina-1beta/farmacologia , Potenciação de Longa Duração/fisiologia , Sinapses/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Ratos , Ratos Sprague-Dawley , Sinapses/efeitos dos fármacos
4.
J Nanobiotechnology ; 17(1): 106, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615570

RESUMO

BACKGROUND: Improving the water solubility of hydrophobic drugs, increasing their accumulation in tumor tissue and allowing their simultaneous action by different pathways are essential issues for a successful chemotherapeutic activity in cancer treatment. Considering potential clinical application in the future, it will be promising to achieve such purposes by developing new biocompatible hybrid nanocarriers with multimodal therapeutic activity. RESULTS: We designed and characterised a hybrid nanocarrier based on human serum albumin/chitosan nanoparticles (HSA/chitosan NPs) able to encapsulate free docetaxel (DTX) and doxorubicin-modified gold nanorods (DOXO-GNRs) to simultaneously exploit the complementary chemotherapeutic activities of both antineoplasic compounds together with the plasmonic optical properties of the embedded GNRs for plasmonic-based photothermal therapy (PPTT). DOXO was assembled onto GNR surfaces following a layer-by-layer (LbL) coating strategy, which allowed to partially control its release quasi-independently release regarding DTX under the use of near infrared (NIR)-light laser stimulation of GNRs. In vitro cytotoxicity experiments using triple negative breast MDA-MB-231 cancer cells showed that the developed dual drug encapsulation approach produces a strong synergistic toxic effect to tumoral cells compared to the administration of the combined free drugs; additionally, PPTT enhances the cytostatic efficacy allowing cell toxicities close to 90% after a single low irradiation dose and keeping apoptosis as the main cell death mechanism. CONCLUSIONS: This work demonstrates that by means of a rational design, a single hybrid nanoconstruct can simultaneously supply complementary therapeutic strategies to treat tumors and, in particular, metastatic breast cancers with good results making use of its stimuli-responsiveness as well as its inherent physico-chemical properties.


Assuntos
Antineoplásicos/administração & dosagem , Docetaxel/administração & dosagem , Doxorrubicina/administração & dosagem , Nanocápsulas/química , Albumina Sérica Humana/química , Neoplasias de Mama Triplo Negativas/terapia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Docetaxel/farmacologia , Doxorrubicina/farmacologia , Ouro/química , Humanos , Hipertermia Induzida , Luz , Nanotubos/química , Fotoquimioterapia , Fototerapia
5.
J Neurosci ; 37(5): 1197-1212, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986924

RESUMO

Long-term potentiation (LTP) is an activity-dependent and persistent increase in synaptic transmission. Currently available techniques to measure LTP are time-intensive and require highly specialized expertise and equipment, and thus are not well suited for screening of multiple candidate treatments, even in animal models. To expand and facilitate the analysis of LTP, here we use a flow cytometry-based method to track chemically induced LTP by detecting surface AMPA receptors in isolated synaptosomes: fluorescence analysis of single-synapse long-term potentiation (FASS-LTP). First, we demonstrate that FASS-LTP is simple, sensitive, and models electrically induced LTP recorded in intact circuitries. Second, we conducted FASS-LTP analysis in two well-characterized Alzheimer's disease (AD) mouse models (3xTg and Tg2576) and, importantly, in cryopreserved human AD brain samples. By profiling hundreds of synaptosomes, our data provide the first direct evidence to support the idea that synapses from AD brain are intrinsically defective in LTP. Third, we used FASS-LTP for drug evaluation in human synaptosomes. Testing a panel of modulators of cAMP and cGMP signaling pathways, FASS-LTP identified vardenafil and Bay-73-6691 (phosphodiesterase-5 and -9 inhibitors, respectively) as potent enhancers of LTP in synaptosomes from AD cases. These results indicate that our approach could provide the basis for protocols to study LTP in both healthy and diseased human brains, a previously unattainable goal. SIGNIFICANCE STATEMENT: Learning and memory depend on the ability of synapses to strengthen in response to activity. Long-term potentiation (LTP) is a rapid and persistent increase in synaptic transmission that is thought to be affected in Alzheimer's disease (AD). However, direct evidence of LTP deficits in human AD brain has been elusive, primarily due to methodological limitations. Here, we analyze LTP in isolated synapses from AD brain using a novel approach that allows testing LTP in cryopreserved brain. Our analysis of hundreds of synapses supports the idea that AD-diseased synapses are intrinsically defective in LTP. Further, we identified pharmacological agents that rescue LTP in AD, thus opening up a new avenue for drug screening and evaluation of strategies for alleviating memory impairments.


Assuntos
Doença de Alzheimer/fisiopatologia , Potenciação de Longa Duração/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Animais , AMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Estimulação Elétrica , Citometria de Fluxo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores de Fosfodiesterase/farmacologia , Ratos Sprague-Dawley , Receptores de AMPA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos
6.
J Neuroinflammation ; 15(1): 127, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29712570

RESUMO

BACKGROUND: Brain inflammation including increases in inflammatory cytokines such as IL-1ß is widely believed to contribute to the pathophysiology of Alzheimer's disease. Although IL-1ß-induced impairments in long-term potentiation (LTP) in acute hippocampal slices and memory functions in vivo have been well documented, the neuron-specific molecular mechanisms of IL-1ß-mediated impairments of LTP and memory remain unclear. METHODS: This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1ß on chemical LTP (cLTP)-induced structural plasticity and signaling. RESULTS: We found that IL-1ß reduces both the surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 and the spine growth following cLTP. These effects of IL-1ß were mediated by impairing actin polymerization during cLTP, as IL-1ß decreased the cLTP-induced formation of F-actin, and the effect of IL-1ß on cLTP-induced surface expression of GluA1 can be mimicked by latrunculin, a toxin that disrupts dynamics of actin filaments, and can be prevented by jasplakinolide, a cell-permeable peptide that stabilizes F-actin. Moreover, live-cell imaging demonstrated that IL-1ß decreased the stability of the actin cytoskeleton in spines, which is required for LTP consolidation. We further examined the role of sphingolipid signaling in the IL-1ß-mediated impairment of spine plasticity and found that both the neutral sphingomyelinase inhibitor GW4869 and the inhibitor of Src kinase PP2 attenuated the IL-1ß-mediated suppression of cLTP-induced surface expression of GluA1 and actin polymerization. CONCLUSIONS: These findings support a mechanism by which IL-1ß, via the sphingomyelinase/ceramide/Src pathway, impairs structural spine remodeling essential for LTP consolidation and memory.


Assuntos
Actinas/metabolismo , Ceramidas/farmacologia , Genes src/fisiologia , Interleucina-1beta/farmacologia , Potenciação de Longa Duração/fisiologia , Receptores de AMPA/biossíntese , Animais , Células Cultivadas , Expressão Gênica , Genes src/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Polimerização/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/antagonistas & inibidores
8.
Proc Natl Acad Sci U S A ; 112(36): E5078-87, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305968

RESUMO

In the aged brain, synaptic plasticity and memory show increased vulnerability to impairment by the inflammatory cytokine interleukin 1ß (IL-1ß). In this study, we evaluated the possibility that synapses may directly undergo maladaptive changes with age that augment sensitivity to IL-1ß impairment. In hippocampal neuronal cultures, IL-1ß increased the expression of the IL-1 receptor type 1 and the accessory coreceptor AcP (proinflammatory), but not of the AcPb (prosurvival) subunit, a reconfiguration that potentiates the responsiveness of neurons to IL-1ß. To evaluate whether synapses develop a similar heightened sensitivity to IL-1ß with age, we used an assay to track long-term potentiation (LTP) in synaptosomes. We found that IL-1ß impairs LTP directly at the synapse and that sensitivity to IL-1ß is augmented in aged hippocampal synapses. The increased synaptic sensitivity to IL-1ß was due to IL-1 receptor subunit reconfiguration, characterized by a shift in the AcP/AcPb ratio, paralleling our culture data. We suggest that the age-related increase in brain IL-1ß levels drives a shift in IL-1 receptor configuration, thus heightening the sensitivity to IL-1ß. Accordingly, selective blocking of AcP-dependent signaling with Toll-IL-1 receptor domain peptidomimetics prevented IL-1ß-mediated LTP suppression and blocked the memory impairment induced in aged mice by peripheral immune challenge (bacterial lipopolysaccharide). Overall, this study demonstrates that increased AcP signaling, specifically at the synapse, underlies the augmented vulnerability to cognitive impairment by IL-1ß that occurs with age.


Assuntos
Interleucina-1beta/farmacologia , Neurônios/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/metabolismo , Sinapses/metabolismo , Fatores Etários , Animais , Western Blotting , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Hipocampo/citologia , Hipocampo/metabolismo , Proteína Acessória do Receptor de Interleucina-1/genética , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/metabolismo , Interferência de RNA , Ratos Sprague-Dawley , Receptores Tipo I de Interleucina-1/genética , Transdução de Sinais/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
9.
J Neurosci ; 36(12): 3611-22, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27013689

RESUMO

An increasing number of studies show that an altered epigenetic landscape may cause impairments in regulation of learning and memory-related genes within the aged hippocampus, eventually resulting in cognitive deficits in the aged brain. One such epigenetic repressive mark is trimethylation of H3K9 (H3K9me3), which is typically implicated in gene silencing. Here, we identify, for the first time, an essential role for H3K9me3 and its histone methyl transferase (SUV39H1) in mediating hippocampal memory functions. Pharmacological inhibition of SUV39H1 using a novel and selective inhibitor decreased levels of H3K9me3 in the hippocampus of aged mice, and improved performance in the objection location memory and fear conditioning tasks and in a complex spatial environment learning task. The inhibition of SUV39H1 induced an increase in spine density of thin and stubby but not mushroom spines in the hippocampus of aged animals and increased surface GluR1 levels in hippocampal synaptosomes, a key index of spine plasticity. Furthermore, there were changes at BDNF exon I gene promoter, in concert with overall BDNF levels in the hippocampus of drug-treated animals compared with control animals. Together, these data demonstrate that SUV39H1 inhibition and the concomitant H3K9me3 downregulation mediate gene transcription in the hippocampus and reverse age-dependent deficits in hippocampal memory. SIGNIFICANCE STATEMENT: Cognitive decline is a debilitating condition associated with not only neurodegenerative diseases but also aging in general. However, effective treatments have been slow to emerge so far. In this study, we demonstrate that epigenetic regulation of key synaptic proteins may be an underlying, yet reversible, cause of this decline. Our findings suggest that histone 3 trimethylation is a probable target for pharmacological intervention that can counteract cognitive decline in the aging brain. Finally, we provide support to the hypothesis that, by manipulating the enzyme that regulates H3K9me3 (using a newly developed specific inhibitor of SUV39H1), it is possible to alter the chromatin state of subjects and restore memory and synaptic function in the aging brain.


Assuntos
Envelhecimento/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Espinhas Dendríticas/fisiologia , Hipocampo/fisiologia , Histonas/metabolismo , Memória/fisiologia , Animais , Histonas/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima/fisiologia
10.
J Neuroinflammation ; 14(1): 29, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28153028

RESUMO

BACKGROUND: Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1ß (IL-1ß) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. METHODS: This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1ß on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. RESULTS: We found that IL-1ß attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1ß-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1ß treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1ß decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1ß treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1ß-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. CONCLUSIONS: We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1ß, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1ß accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Endossomos/metabolismo , Interleucina-1beta/farmacologia , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endossomos/efeitos dos fármacos , Humanos , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos
11.
J Biol Chem ; 289(30): 20615-29, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24917666

RESUMO

The mammalian target of rapamycin (mTOR) pathway has multiple important physiological functions, including regulation of protein synthesis, cell growth, autophagy, and synaptic plasticity. Activation of mTOR is necessary for the many beneficial effects of brain-derived neurotrophic factor (BDNF), including dendritic translation and memory formation in the hippocampus. At present, however, the role of mTOR in BDNF's support of survival is not clear. We report that mTOR activation is necessary for BDNF-dependent survival of primary rat hippocampal neurons, as either mTOR inhibition by rapamycin or genetic manipulation of the downstream molecule p70S6K specifically blocked BDNF rescue. Surprisingly, however, BDNF did not promote neuron survival by up-regulating mTOR-dependent protein synthesis or through mTOR-dependent suppression of caspase-3 activation. Instead, activated mTOR was responsible for BDNF's suppression of autophagic flux. shRNA against the autophagic machinery Atg7 or Atg5 prolonged the survival of neurons co-treated with BDNF and rapamycin, suggesting that suppression of mTOR in BDNF-treated cells resulted in excessive autophagy. Finally, acting as a physiological analog of rapamycin, IL-1ß impaired BDNF signaling by way of inhibiting mTOR activation as follows: the cytokine induced caspase-independent neuronal death and accelerated autophagic flux in BDNF-treated cells. These findings reveal a novel mechanism of BDNF neuroprotection; BDNF not only prevents apoptosis through inhibiting caspase activation but also promotes neuron survival through modulation of autophagy. This protection mechanism is vulnerable under chronic inflammation, which deregulates autophagy through impairing mTOR signaling. These results may be relevant to age-related changes observed in neurodegenerative diseases.


Assuntos
Autofagia/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Imunossupressores/farmacologia , Interleucina-1beta/metabolismo , Neurônios/metabolismo , Sirolimo/farmacologia , Animais , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo
12.
Purinergic Signal ; 10(2): 269-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24014158

RESUMO

D(1)- and D(2)-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A(1)-type receptors are located in both neuron classes, and adenosine A(2A)-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca(2+)-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D(1)-type receptors increase, while D(2)-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca(2+)-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A(1)- and A(2A)-receptors have not been compared observing their actions on Ca(2+)-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca(2+)-currents by A(1)-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A(1)- and A2A-receptors. We demonstrate that A(1)-type receptors reduced Ca(2+)-currents in all SPNs tested. However, A(2A)-type receptors enhanced Ca(2+)-currents only in half tested neurons. Intriguingly, to observe the actions of A(2A)-type receptors, occupation of A(1)-type receptors had to occur first. However, A(1)-receptors decreased Ca(V)2 Ca(2+)-currents, while A(2A)-type receptors enhanced current through Ca(V)1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.


Assuntos
Corpo Estriado/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Animais , Masculino , Técnicas de Patch-Clamp , Ratos , Ratos Wistar
13.
Pediatr Transplant ; 18(7): 746-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25180826

RESUMO

To determine HRQOL after pediatric intestinal transplantation. Thirty-four IT survivors from 1999 to 2012 were asked to complete age-specific HRQOL non-disease-specific questionnaires: TAPQOL (0-4 yr), KINDL-R (5-7 yr; 8-12 yr; 13-17 yr), and SF-36v2 (>18 yr), all validated with Spanish population. Primary caregiver completed a SF-36 questionnaire and CBI. Thirty-one participants were included. Median age was 10.2 yr (1-29) and time after transplant 4.4 yr (0-13). Overall patient scores were 78.2 ± 10.6 (n = 8), 83.3 ± 9.7 (n = 6), 72.2 ± 9.21 (n = 6), 80.5 ± 12.4 (n = 7), and 82.2 ± 12.4 (n = 4) for each age group. Highest scores were obtained for vitality (group I), self-esteem (group IV), and physical and social functioning and emotions (group V). Lowest scores were obtained in appetite and behavior (I), family and school (III), and chronic disease perception (III, IV). No significant differences were found between caregivers and their children. CBI showed stress in 52%. SF-36 for caregivers was lower than general population. No significant differences were found depending on relevant clinical and sociodemographic data. HRQOL was acceptable and improved with age and time since transplantation. Parents had a slighter own QOL and worse perception of health than their children. When successful, intestinal transplantation allows a normal life in most patients and can be offered as an attractive option.


Assuntos
Intestinos/transplante , Qualidade de Vida , Transplante/psicologia , Adolescente , Adulto , Cuidadores , Criança , Pré-Escolar , Feminino , Nível de Saúde , Humanos , Lactente , Masculino , Análise de Regressão , Espanha , Inquéritos e Questionários , Adulto Jovem
14.
Sci Total Environ ; 914: 170026, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218486

RESUMO

Estuarine coastal water and sediments collected from multiple locations within the middle Río de la Plata (RDLP) estuary were analyzed in order to identify the presence of microplastics (MPs, <5 mm) and mesoplastics (MePs, 5-25 mm) in one of the most significant estuaries in the Southwestern Atlantic. The present study represents one of the first researches to survey MPs and MePs contamination in key stations at RDLP estuary. Average concentrations of 14.17 ± 5.50 MPs/L and 10.00 MePs/L were detected in water samples, while 547.83 ± 620.06 MPs/kg (dry weight) and 74.23 ± 47.29 MePs/kg d.w. were recorded in sediments. The greatest abundances were observed in the more anthropized areas, near urban settlements. Fibers were the most conspicuous plastic items in water and sediments, followed by fragments. On the other hand, surface sediments, and 50 cm and 100 cm-depth sediments also presented MPs and MePs indicating they could serve as a stratigraphic indicator for recently formed sediments. The main polymer type identified were acrylic fibers, followed by polypropylene (PP) and polyethylene terephthalate (PET). Besides, SEM-EDX detected the presence of Si, Fe, Ti, Al and Cl onto the plastics' surface. These elements may serve as additives to enhance the plastics' properties, such as in the case of Ti, or they could originate from the environment, like biogenic Si or Fe, and Al possibly as a component of the suspended particles or sediments adhered to the micro or meso plastics. Finally, the results of the present study showed that MPs and MePs are commonly found in waters and also tend to be trapped in sediments of the RDLP estuary supporting the assertion that these areas play a substantial role in influencing the transport, dispersion, and buildup of MPs in estuarine regions.

15.
J Neurosci ; 32(49): 17714-24, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23223292

RESUMO

Evolving evidence suggests that brain inflammation and the buildup of proinflammatory cytokine increases the risk for cognitive decline and cognitive dysfunction. Interleukin-1ß (IL-1ß), acting via poorly understood mechanisms, appears to be a key cytokine in causing these deleterious effects along with a presumably related loss of long-term potentiation (LTP)-type synaptic plasticity. We hypothesized that IL-1ß disrupts brain-derived neurotrophic factor (BDNF) signaling cascades and thereby impairs the formation of filamentous actin (F-actin) in dendritic spines, an event that is essential for the stabilization of LTP. Actin polymerization in spines requires phosphorylation of the filament severing protein cofilin and is modulated by expression of the immediate early gene product Arc. Using rat organotypic hippocampal cultures, we found that IL-1ß suppressed BDNF-dependent regulation of Arc and phosphorylation of cofilin and cAMP response element-binding protein (CREB), a transcription factor regulating Arc expression. IL-1ß appears to act on BDNF signal transduction by impairing the phosphorylation of insulin receptor substrate 1, a protein that couples activation of the BDNF receptor TrkB to downstream signaling pathways regulating CREB, Arc, and cofilin. IL-1ß upregulated p38 mitogen-activated protein kinase (MAPK), and inhibiting p38 MAPK prevented IL-1ß from disrupting BDNF signaling. IL-1ß also prevented the formation of F-actin in spines and impaired the consolidation, but not the induction, of BDNF-dependent LTP in acute hippocampal slices. The suppressive effect of IL-1ß on F-actin and LTP was prevented by inhibiting p38 MAPK. These findings define a new mechanism for the action of IL-1ß on LTP and point to a potential therapeutic target to restore synaptic plasticity.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/antagonistas & inibidores , Interleucina-1beta/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Actinas/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiologia , Cofilina 1/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/biossíntese , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Regulação da Expressão Gênica/fisiologia , Hipocampo/fisiologia , Interleucina-1beta/farmacologia , Potenciação de Longa Duração/fisiologia , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Pediatr Transplant ; 17(6): 556-60, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23890077

RESUMO

The native spleen is usually removed in patients undergoing MTV. The consequential asplenic state is associated with a high risk of sepsis, especially in immunosuppressed children. In contrast, the inclusion of an allogeneic spleen in multivisceral grafts has been associated with a high incidence of GVHD. We propose an alternative technique for patients undergoing MTV, consisting of the preservation of the native spleen. This approach avoids the additional risk of infection that characterizes the asplenic state without the detrimental side effects of the allogeneic spleen.


Assuntos
Transplante de Órgãos/métodos , Baço/transplante , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus/terapia , Feminino , Doenças da Vesícula Biliar/terapia , Doença Enxerto-Hospedeiro , Humanos , Terapia de Imunossupressão/métodos , Imunossupressores/uso terapêutico , Lactente , Atresia Intestinal/terapia , Pseudo-Obstrução Intestinal/terapia , Masculino , Risco , Síndrome do Intestino Curto/terapia , Baço/patologia , Baço/cirurgia , Fatores de Tempo , Fístula Traqueoesofágica/terapia
17.
Aging Cell ; 22(9): e13905, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37334527

RESUMO

DNA damage is a central contributor to the aging process. In the brain, a major threat to the DNA is the considerable amount of reactive oxygen species produced, which can inflict oxidative DNA damage. This type of damage is removed by the base excision repair (BER) pathway, an essential DNA repair mechanism, which contributes to genome stability in the brain. Despite the crucial role of the BER pathway, insights into how this pathway is affected by aging in the human brain and the underlying regulatory mechanisms are very limited. By microarray analysis of four cortical brain regions from humans aged 20-99 years (n = 57), we show that the expression of core BER genes is largely downregulated during aging across brain regions. Moreover, we find that expression of many BER genes correlates positively with the expression of the neurotrophin brain-derived neurotrophic factor (BDNF) in the human brain. In line with this, we identify binding sites for the BDNF-activated transcription factor, cyclic-AMP response element-binding protein (CREB), in the promoter of most BER genes and confirm the ability of BDNF to regulate several BER genes by BDNF treatment of mouse primary hippocampal neurons. Together, these findings uncover the transcriptional landscape of BER genes during aging of the brain and suggest BDNF as an important regulator of BER in the human brain.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Reparo do DNA , Animais , Humanos , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Reparo do DNA/genética , Transdução de Sinais/genética
18.
Mar Pollut Bull ; 191: 114997, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37148588

RESUMO

In this study, we surveyed the presence of personal protective equipment (PPE) waste on the streets of Bogotá-Colombia, Lima-Perú, and Mar del Plata-Argentina. Furthermore, this work is also focused on the release capacity of Ag, Cu, and Zn metals associated with nanoparticles, and microplastics (MPs) from textile face masks (TFMs) and disposable face masks. According to our results, an association between low-income areas and PPE waste was found, which may be related to the periodicity of waste collection and economic activity. Polymers, like polypropylene, cotton-polyester, and additives, such as CaCO3, MgO, and Ag/Cu as nanoparticles, were identified. TFMs released high levels of Cu (35,900-60,200 µg·L-1), Zn (2340-2380 µg·L-1), and MPs (4528-10,640 particles/piece). Metals associated with nanoparticles leached by face masks did not present any antimicrobial activity against P. aeruginosa. Our study suggests that TFMs may leach large amounts of polluting nano/micromaterials in aquatic environments with potential toxicological effects on organisms.


Assuntos
Metais Pesados , Nanopartículas , Microplásticos , Máscaras , Plásticos , Cidades , Metais Pesados/análise , Equipamento de Proteção Individual , América do Sul
19.
Actas Urol Esp (Engl Ed) ; 47(7): 422-429, 2023 09.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36746348

RESUMO

BACKGROUND: The EAU proposed a progression and death risk classification in patients with biochemical recurrence after radical prostatectomy (PR). OBJECTIVE: To validate the EAU BCR-risk classification in our setting and to find factors related to progression and death. MATERIAL AND METHODS: Multicenter, retrospective, observational study including 2140 patients underwent RP between 2011 and 2015. Patients with BCR were identified and stratified in low risk (PSA-DT >1yr and pGS <8) or high-risk (PSA-DT ≤1yr or pGS ≥8) grouping. PSA and metastatic free survival (PSA-PFS, MFS), cancer specific survival (CSS) and overall survival (OS) were calculated (Kaplan Meier curves and log-rank test). Independent risk factors were identified (Cox regression). RESULTS: 427 patients experienced BCR (32.3% low-risk and 67.7% high-risk). Median PSA-PFS was 135,0 mo (95% CI 129,63-140,94) and 115,0 mo (95% CI 104,02-125,98) (p<0,001), for low and high-risk groups, respectively. There were also significant differences in MFS and OS. The EAU BCR risk grouping was independent factor for PSA-progression (HR 2.55, p 0.009). Time from PR to BCR, was an independent factor for metastasis onset (HR 0.43, 95% CI 0.18-0.99; p 0.044) and death (HR 0.17, 95% CI 0.26.0.96; 23 p 0.048). Differences in MFS (p 0.001) and CSS (p 0.004) were found for <12, ≥12-<36 and ≥36 months from PR to BCR. Others independent factors were early salvage radiotherapy and PSA at BCR. CONCLUSIONS: High-risk group is a prognostic factor for biochemical progression, but it has a limited accuracy on MP and death in our setting. The inclusion of other factors could increase its predictive power.


Assuntos
Antígeno Prostático Específico , Urologia , Masculino , Humanos , Estudos Retrospectivos , Fatores de Risco , Prostatectomia/efeitos adversos
20.
J Neurophysiol ; 105(5): 2260-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21389298

RESUMO

The loss of dopaminergic neurons in the substantia nigra compacta followed by striatal dopamine depletion is a hallmark of Parkinson's disease. After dopamine depletion, dopaminergic D(2) receptor (D(2)R)-class supersensitivity develops in striatal neurons. The supersensitivity results in an enhanced modulation of Ca(2+) currents by D(2)R-class receptors. However, the relative contribution of D(2)R, D(3)R, and D(4)R types to the supersensitivity, as well as the mechanisms involved, have not been elucidated. In this study, whole cell voltage-clamp recordings were performed to study Ca(2+) current modulation in acutely dissociated striatal neurons obtained from rodents with unilateral 6-hydroxydopamine lesions in the substantia nigra compacta. Selective antagonists for D(2)R, D(3)R, and D(4)R types were used to identify whether the modulation by one of these receptors experiences a selective change after dopaminergic denervation. It was found that D(3)R-mediated modulation was particularly enhanced. Increased modulation targeted Ca(V)2.1 (P/Q) Ca(2+) channels via the depletion of phosphatidylinositol 4,5-bisphosphate, an intracellular signaling cascade hard to detect in control neurons and hypothesized as being amplified by dopamine depletion. An imbalance in the striatal expression of D(3)R and its splice variant, D(3)nf, accompanied enhanced D(3)R activity. Because Ca(V)2.1 Ca(2+) channels mediate synaptic GABA release from the terminals of striatal neurons, reinforcement of their inhibition by D(3)R may explain in part the profound decrease in synaptic strength in the connections among striatal projection neurons observed in the dopamine-depleted striatum.


Assuntos
Canais de Cálcio Tipo N/fisiologia , Corpo Estriado/metabolismo , Dopamina/metabolismo , Fosfoinositídeo Fosfolipase C/deficiência , Receptores de Dopamina D2/biossíntese , Receptores de Dopamina D3/fisiologia , Animais , Masculino , Camundongos , Camundongos Transgênicos , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Simpatectomia/métodos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA