Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36201346

RESUMO

Six strains of black meristematic fungi were isolated from Antarctic soils, gasoline car tanks and from the marine alga Flabellia petiolata. These fungi were characterized by morphological, physiological and phylogenetic analyses. According to the maximum-likelihood analysis reconstructed with ITS and LSU sequences, these strains belonged to the genus Knufia. Knufia obscura sp. nov. (holotype CBS 148926) and Knufia victoriae sp. nov. (holotype CBS 149015) are proposed as two novel species and descriptions of their morphological, physiological and phylogenetic features are presented. Based on the maximum-likelihood analyses, K. obscura was closely related to Knufia hypolithi (99 % bootstrap support), while K. victoriae clustered in the clade of Knufia cryptophialidica and Knufia perfecta (93 % bootstrap support). Knufia victoriae, recorded in Antarctic soil samples, had a psychrophilic behaviour, with optimal growth between 10 and 15 °C and no growth recorded at 20 °C. Knufia obscura, from a gasoline car tank and algae, displayed optimal growth between 20 and 25 °C and was more tolerant to salinity than K. victoriae.


Assuntos
Ácidos Graxos , Gasolina , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ambientes Extremos , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo
2.
Ecotoxicol Environ Saf ; 171: 443-450, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30639870

RESUMO

Viable and metabolically active fungi in toxic mixed liquors, treating landfill leachates and municipal wastewaters, were identified by culture depending methods. A selective culture medium consisting of wastewater and agar (WA) restrained fungi that could be randomly present (94% of the 51 taxa retrieved on WA were sample-specific), overcoming the problem of fast growing fungi or mycoparasite fungi. Moreover, WA allowed the isolation of fungi with a possible role in the degradation of pollutants typically present in the two wastewaters. Phoma medicaginis var. medicaginis, Chaetomium globosum, and Geotrichum candidum were mainly found in municipal wastewater, whereas Pseudallescheria boydii, Scedosporium apiospermum, Aspergillus pseudodeflectus, and Scopulariopsis brevicaulis were typical of landfill leachate.


Assuntos
Fungos/isolamento & purificação , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Ágar/química , Ascomicetos/isolamento & purificação , Aspergillus/isolamento & purificação , Chaetomium/isolamento & purificação , Contagem de Colônia Microbiana , Monitoramento Ambiental , Fungos/classificação , Geotrichum/isolamento & purificação , Concentração de Íons de Hidrogênio , Pseudallescheria/isolamento & purificação , Scedosporium/isolamento & purificação , Scopulariopsis/isolamento & purificação
3.
Appl Microbiol Biotechnol ; 102(24): 10361-10375, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30293196

RESUMO

Tannins are secondary metabolites that are widely distributed in the plant kingdom. They act as growth inhibitors for many microorganisms: they are released upon microbial attack, helping to fight infection in plant tissues. Extraction of tannins from plants is an active industrial sector with several applications, including oenology, animal feeding, mining, the chemical industry, and, in particular, the tanning industry. However, tannins are also considered very recalcitrant pollutants in wastewater of diverse origin. The ability to grow on plant substrates rich in tannins and on industrial tannin preparations is usually considered typical of some species of fungi. These organisms are able to tolerate the toxicity of tannins thanks to the production of enzymes that transform or degrade these substrates, mainly through hydrolysis and oxidation. Filamentous fungi capable of degrading tannins could have a strong environmental impact as bioremediation agents, in particular in the treatment of tanning wastewaters.


Assuntos
Fungos/efeitos dos fármacos , Fungos/metabolismo , Taninos/química , Taninos/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biotransformação , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Taninos/farmacologia
4.
Appl Microbiol Biotechnol ; 102(9): 4203-4216, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29552693

RESUMO

Tannins are a complex family of polyphenolic compounds, widely distributed in the plant kingdom where they act as growth inhibitors towards many microorganisms including bacteria, yeasts, and fungi. Tannins are one of the major components of tannery wastewaters and may cause serious environmental pollution. In the present study, four different tannins (the hydrolysable chestnut ellagitannin and tara gallotannin and the condensed quebracho and wattle tannins) were characterized from a mycological point of view with the aim of selecting fungal strains capable of growing in the presence of high tannin concentration and thus potentially useful in industrial biotransformations of these compounds or in the bioremediation of tannery wastewaters. A total of 125 isolates of filamentous fungi belonging to 10 species and four genera (Aspergillus, Paecilomyces, Penicillium, and Talaromyces) were isolated from the tannin industrial preparations. Miniaturized biotransformation tests were set up with 10 fungal strains and the high-performance liquid chromatography (HPLC) analysis pointed out a strong activity of all the tested fungi on both chestnut and tara tannins. Two strains (Aspergillus tubingensis MUT 990 and Paecilomyces variotii MUT 1125), tested against a real tannery wastewater, were particularly efficient in chemical oxygen demand (COD) and tannin removal (> 60%), with a detoxification above 74%. These results indicate that these fungi are potentially exploitable in the treatment of tannery wastewaters.


Assuntos
Fungos/metabolismo , Microbiologia Industrial/métodos , Taninos/metabolismo , Águas Residuárias/microbiologia , Purificação da Água/métodos , Biodegradação Ambiental , Biotransformação , Taninos/análise , Águas Residuárias/química
5.
Sci Total Environ ; 871: 162106, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764528

RESUMO

Anthropogenic disturbance on natural ecosystems is growing in frequency and magnitude affecting all ecosystems components. Understanding the response of different types of biocoenosis to human disturbance is urgently needed and it can be achieved by adopting a metacommunity framework. With the aid of advanced molecular techniques, we investigated sediment communities of Fungi, Bacteria and Archaea in four Italian show caves, aiming to disentangle the effects induced by tourism on their diversity and to highlight changes in the driving forces that shape their community composition. We modelled diversity measures against proxies of tourism pressure. With this approach we demonstrate that the cave tourism has a direct effect on the community of Bacteria and an indirect influence on Fungi and Archaea. By analysing the main driving forces influencing the community composition of the three microbial groups, we highlighted that stochastic factors override dispersal-related processes and environmental selection in show caves compared to undisturbed areas. Thanks to this approach, we provide new perspectives on the dynamics of microbial communities under human disturbance suggesting that a proper understanding of the underlying selective mechanisms requires a comprehensive and multi-taxonomic approach.


Assuntos
Microbiota , Turismo , Humanos , Cavernas/microbiologia , Bactérias , Archaea , Fungos
6.
Sci Rep ; 13(1): 689, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639707

RESUMO

To date, the highly adapted cave microbial communities are challenged by the expanding anthropization of these subterranean habitats. Although recent advances in characterizing show-caves microbiome composition and functionality, the anthropic effect on promoting the establishment, or reducing the presence of specific microbial guilds has never been studied in detail. This work aims to investigate the whole microbiome (Fungi, Algae, Bacteria and Archaea) of four Italian show-caves, displaying different environmental and geo-morphological conditions and one recently discovered natural cave to highlight potential human-induced microbial traits alterations. Results indicate how show-caves share common microbial traits in contrast to the natural one; the first are characterized by microorganisms related to outdoor environment and/or capable of exploiting extra inputs of organic matter eventually supplied by tourist flows (i.e. Chaetomium and Phoma for fungi and Pseudomonas for bacteria). Yet, variation in microalgae assemblage composition was reported in show-caves, probably related to the effect of the artificial lighting. This study provides insights into the potential microbiome cave contamination by human-related bacteria (e.g. Lactobacillus and Staphylococcus) and commensal/opportunistic human associated fungi (e.g. Candida) and dermatophytes. This work is critical to untangle caves microbiome towards management and conservation of these fragile ecosystems.


Assuntos
Cavernas , Microbiota , Humanos , Cavernas/microbiologia , Efeitos Antropogênicos , Bactérias , Archaea , Fungos
7.
Curr Microbiol ; 64(1): 50-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22006070

RESUMO

Zygomycetes such as Cunninghamella elegans seem to be promising biosorbents for pollutants removal from wastewaters because of their particular cell wall characteristics. In this article the effect of ten culture media on C. elegans biomass composition was investigated by means of Fourier transform infra red spectroscopy (FTIR). Biomasses grown on starches from potatoes and cereals were characterised by high amount of chitin and polysaccharides, the glucose gave rise to a biomass rich in acidic polysaccharides and lipids. By contrast, biomasses grown on corn steep liquor were poor in acidic polysaccharides and, when N sources and micronutrients were added, rich in proteins. The lipid content of the biomass generally increased by halving nutrients. Biosorption yields of these biomasses towards four wastewater models were assessed in terms of colour, salts and toxicity reduction. The biomasses rich in proteins and acid polysaccharides were less effective in removing reactive and direct dyes, whereas those rich in cationic polysaccharides showed a higher affinity for these dyes. Both chromatography and FTIR analyses showed that biomasses cultured in halved C and N had the highest affinity for salts. The wastewaters detoxification was quite always achieved, with values often lower that the Italian legal threshold limit.


Assuntos
Meios de Cultura/metabolismo , Cunninghamella/crescimento & desenvolvimento , Cunninghamella/metabolismo , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Biomassa , Resíduos Industriais/análise , Esgotos/análise , Esgotos/microbiologia , Poluentes Químicos da Água/metabolismo
8.
J Fungi (Basel) ; 8(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36135652

RESUMO

Fungi are an essential component of marine ecosystems, although little is known about their global distribution and underwater diversity, especially in sediments. Microplastics (MPs) are widespread contaminants worldwide and threaten the organisms present in the oceans. In this study, we investigated the fungal abundance and diversity in sediments, as well as the MPs, of three sites with different anthropogenic impacts in the Mediterranean Sea: the harbor of Livorno, the marine protected area "Secche della Meloria"; and an intermediate point, respectively. A total of 1526 isolates were cultured and identified using a polyphasic approach. For many of the fungal species this is the first record in a marine environment. A comparison with the mycobiota associated with the sediments and MPs underlined a "substrate specificity", highlighting the complexity of MP-associated fungal assemblages, potentially leading to altered microbial activities and hence changes in ecosystem functions. A further driving force that acts on the fungal communities associated with sediments and MPs is sampling sites with different anthropogenic impacts.

9.
Appl Microbiol Biotechnol ; 90(1): 343-52, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21127858

RESUMO

The effect of pre-treatments on the composition of Cunninghamella elegans biomass and on its biosorption yields in the treatment of simulated textile wastewaters was investigated. The inactivated biomass was subjected to physical treatments, such as oven drying and lyophilisation, and chemical treatments using acid or alkali. The wastewater colour, COD and toxicity variations were evaluated. The lyophilisation sped up the biosorption process, whereas the chemical pre-treatment changed the affinity of biomass for different dyes. The alkali per-treated biomass achieved the highest COD reduction in the treatment of alkali wastewaters, probably because no release of alkali-soluble biomass components occurred under the alkaline pH conditions. Accordingly, only the acid pre-treated biomass decreased the COD of the acidic effluent. The ecotoxicity test showed significant toxicity reduction after biosorption treatments, indicating that decolourisation corresponds to an actual detoxification of the treated wastewaters. Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analyses of biomasses allowed highlighting their main chemical and physical properties and the changes induced by the different pre-treatments, as well as the effect of the chemical species adsorbed from wastewaters.


Assuntos
Cunninghamella/crescimento & desenvolvimento , Cunninghamella/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Biodegradação Ambiental , Biomassa , Clorófitas/efeitos dos fármacos , Corantes/metabolismo , Corantes/toxicidade , Resíduos Industriais/análise , Indústria Têxtil , Poluentes Químicos da Água/toxicidade
10.
J Fungi (Basel) ; 7(11)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34829227

RESUMO

The order Lulworthiales, with its sole family Lulworthiaceae, consists of strictly marine genera found on a wide range of substrates such as seagrasses, seaweeds, and seafoam. Twenty-one unidentified Lulworthiales were isolated in previous surveys aimed at broadening our understanding of the biodiversity hosted in the Mediterranean Sea. Here, these organisms, mostly found in association with Posidonia oceanica and with submerged woods, were examined using thorough multi-locus phylogenetic analyses and morphological observations. Maximum-likelihood and Bayesian phylogeny based on nrITS, nrSSU, nrLSU, and four protein-coding genes led to the introduction of three novel species of the genus Paralulworthia: P. candida, P. elbensis, and P. mediterranea. Once again, the marine environment is a confirmed huge reservoir of novel fungal lineages with an under-investigated biotechnological potential waiting to be explored.

11.
Environ Pollut ; 274: 116548, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33540258

RESUMO

Polyethylene (PE) is the most abundant non-degradable plastic waste, posing a constant and serious threat to the whole ecosystem. In the present study, the fungal community of plastic wastes contaminating a landfill soil has been studied. After 6 months of enrichment, 95 fungi were isolated, mostly belonging to the Ascomycota phylum. They were screened under in vitro condition: most of fungi (97%) were capable of growing in the presence of PE powder (5-10 g L-1) as sole carbon source. Fusarium strains better tolerated high concentration of PE. Up to 13 strains were chosen for further degradation trails, where the process was monitored by respirometry tests and by observing changes in PE chemical and physical structure by FTIR analysis and SEM images. Major results were observed for Fusarium oxysporum, Fusarium falciforme and Purpureocillum lilacinum, as they caused strong oxidation phenomena and changes in the PE film morphology. Results suggested that the initial oxidation mechanisms targeted first the methyl terminal groups. Changes in the infrared spectra were strongly strain-dependent, denoting the activation of different degradation pathways. Through the SEM analysis, the actual damages provoked by fungi were observed, including swellings, pits and furrows, bumps and partial exfoliations. Considering the rising concern about plastic disposal worldwide, the ability of these fungi to colonize PE and utilize it as carbon source is of great interest, as no pretreatments and pro-oxidant stimulants were needed.


Assuntos
Ecossistema , Polietileno , Biodegradação Ambiental , Fungos , Fusarium
12.
Antonie Van Leeuwenhoek ; 98(4): 483-504, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20585855

RESUMO

Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.


Assuntos
Basidiomycota/isolamento & purificação , Basidiomycota/metabolismo , Micorrizas , Oxirredutases/metabolismo , Basidiomycota/classificação , Basidiomycota/enzimologia , Biodegradação Ambiental , Corantes/metabolismo , Ecossistema , Itália , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Micorrizas/enzimologia , Micorrizas/metabolismo , Peroxidase/metabolismo , Indústria Têxtil , Têxteis , Árvores/microbiologia , Eliminação de Resíduos Líquidos , Madeira/metabolismo
13.
Front Microbiol ; 11: 933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528431

RESUMO

Fungi are widely distributed in the Oceans, interact with other organisms and play roles that range from pathogenic to mutualistic. The present work focuses on the characterization of the cultivable mycobiota associated with the seagrass Posidonia oceanica (L.) Delile collected off the Elba Island (Italy). We identified 102 taxa (mainly Ascomycota) by the mean of a polyphasic approach. Leaves, rhizomes, roots and matte were characterized by unique mycobiota revealing a "plant-part-specificity." The comparison with the mycobiota associated with the green alga Flabellia petiolata and the brown alga Padina pavonica underlined a "substrate specificity." Indeed, despite being part of the same phytocoenosis, these photosynthetic organisms recruit different fungal communities. The mycobiota seems to be necessary for the host's defense and protection, playing, in this way, remarkable ecological roles. Among the 61 species detected in association with P. oceanica (including two species belonging to the newly introduced genus Paralulworthia), 37 were reported for the first time from the Mediterranean Sea.

14.
Microorganisms ; 8(9)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825267

RESUMO

Mono- and polycyclic aromatic hydrocarbons (PAHs) are widespread and recalcitrant pollutants that threaten both environmental and human health. By exploiting the powerful enzymatic machinery of fungi, mycoremediation in contaminated sites aims at removing a wide range of pollutants in a cost-efficient and environmentally friendly manner. Next-generation sequencing (NGS) techniques are powerful tools for understanding the molecular basis of biotransformation of PAHs by selected fungal strains, allowing genome mining to identify genetic features of biotechnological value. Trichoderma lixii MUT3171, isolated from a historically PAH-contaminated soil in Italy, can grow on phenanthrene, as a sole carbon source. Here, we report the draft genome sequence of T. lixii MUT3171 obtained with high-throughput sequencing method. The genome of T. lixii MUT3171 was compared with other 14 Trichoderma genomes, highlighting both shared and unique features that can shed a light on the biotransformation of PAHs. Moreover, the genes potentially involved in the production of important biosurfactants and bioactive molecules have been investigated. The gene repertoire of T. lixii MUT3171 indicates a high degrading potential and provides hints on putative survival strategies in a polluted environment.

15.
Life (Basel) ; 10(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352712

RESUMO

The polyphyletic group of black fungi within the Ascomycota (Arthoniomycetes, Dothideomycetes, and Eurotiomycetes) is ubiquitous in natural and anthropogenic habitats. Partly because of their dark, melanin-based pigmentation, black fungi are resistant to stresses including UV- and ionizing-radiation, heat and desiccation, toxic metals, and organic pollutants. Consequently, they are amongst the most stunning extremophiles and poly-extreme-tolerant organisms on Earth. Even though ca. 60 black fungal genomes have been sequenced to date, [mostly in the family Herpotrichiellaceae (Eurotiomycetes)], the class Dothideomycetes that hosts the largest majority of extremophiles has only been sparsely sampled. By sequencing up to 92 species that will become reference genomes, the "Shed light in The daRk lineagES of the fungal tree of life" (STRES) project will cover a broad collection of black fungal diversity spread throughout the Fungal Tree of Life. Interestingly, the STRES project will focus on mostly unsampled genera that display different ecologies and life-styles (e.g., ant- and lichen-associated fungi, rock-inhabiting fungi, etc.). With a resequencing strategy of 10- to 15-fold depth coverage of up to ~550 strains, numerous new reference genomes will be established. To identify metabolites and functional processes, these new genomic resources will be enriched with metabolomics analyses coupled with transcriptomics experiments on selected species under various stress conditions (salinity, dryness, UV radiation, oligotrophy). The data acquired will serve as a reference and foundation for establishing an encyclopedic database for fungal metagenomics as well as the biology, evolution, and ecology of the fungi in extreme environments.

16.
Microb Cell Fact ; 8: 5, 2009 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-19138404

RESUMO

BACKGROUND: Polychlorinated biphenyls (PCBs) are widespread toxic pollutants. Bioremediation might be an effective, cost competitive and environment-friendly solution for remediating environmental matrices contaminated by PCBs but it is still unsatisfactory, mostly for the limited biodegradation potential of bacteria involved in the processes. Very little is known about mitosporic fungi potential in PCB bioremediation and their occurrence in actual site historically contaminated soils. In the present study, we characterised the native mycoflora of an aged dump site soil contaminated by about 0.9 g kg-1 of Aroclor 1260 PCBs and its changing after aerobic biotreatment with a commercial complex source of bacteria and fungi. Fungi isolated from the soil resulting from 120 days of treatment were screened for their ability to adsorb or metabolise 3 target PCBs. RESULTS: The original contaminated soil contained low loads of few fungal species mostly belonging to the Scedosporium, Penicillium and Aspergillus genera. The fungal load and biodiversity generally decreased throughout the aerobic treatment. None of the 21 strains isolated from the treated soil were able to grow on biphenyl (200 mg L-1) or a mixture of 2-chlorobiphenyl, 4,4'-dichlorobiphenyl and 2,2',5,5'-tetrachlorobiphenyl (20 mg L-1 each) as sole carbon sources. However, 16 of them grew in a mineral medium containing the same PCBs mixture and glucose (10 g L-1). Five of the 6 isolates, which displayed the faster and more extensive growth under the latter conditions, were found to degrade the 3 PCBs apparently without the involvement of ligninolytic enzymes; they were identified as Penicillium chrysogenum, Scedosporium apiospermum, Penicillium digitatum and Fusarium solani. They are the first PCB degrading strains of such species reported so far in the literature. CONCLUSION: The native mycoflora of the actual site aged heavily contaminated soil was mainly constituted by genera often reported as able to biodegrade organopollutants. It was generally remarkably reduced after the biotreatment, which however resulted in the selection of few mitosporic fungal species able to biodegrade PCBs. This is the first study in which an extensive characterisation of the cultivable indigenous mycoflora of an actual site aged PCB contaminated soil, as well as its changes upon soil bioremediation treatment, was conducted. Moreover, this is the first paper in which 5 strains ascribable to 4 mitosporic species able to biodegrade PCB are reported in the literature.

17.
MycoKeys ; 55: 15-28, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31274984

RESUMO

Elbamycellarosea sp. nov., introduced in the new genus Elbamycella, was collected in the Mediterranean Sea in association with the seagrass Posidoniaoceanica and with the brown alga Padinapavonica. The affiliation of the new taxon to the family Juncigenaceae is supported by both morphology and phylogenetic inference based on a combined nrSSU and nrLSU sequence dataset. Maximum-likelihood and Bayesian phylogeny proved Elbamycella gen. nov. as a distinct genus within Juncigenaceae. The new genus has been compared with closely related genera and is characterised by a unique suite of characters, such as ascospores with polar appendages and peculiar shape and dimension of ascomata and asci.

18.
Int Microbiol ; 22(1): 103-110, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30810938

RESUMO

Two ascomycete strains were isolated from creosote-contaminated railway sleeper wood. By using a polyphasic approach combining morpho-physiological observations of colonies with molecular tools, the strains were identified as Fusarium oxysporum Schltdl. (IBPPM 543, MUT 4558; GenBank accession no. MG593980) and Lecanicillium aphanocladii Zare & W. Gams (IBPPM 542, MUT 242; GenBank accession no. MG593981). Both strains degraded hazardous pollutants, including polycyclic aromatic hydrocarbons, anthraquinone-type dyes, and oil. Oil was better degraded by F. oxysporum, but the aromatic compounds were better degraded by L. aphanocladii. With both strains, the degradation products of anthracene, phenanthrene, and fluorene were 9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone, respectively. During pollutant degradation, F. oxysporum and L. aphanocladii produced an emulsifying compound(s). Both fungi produced extracellular Mn-peroxidases, enzymes possibly involved in the fungal degradation of the pollutants. This is the first report on the ability of L. aphanocladii to degrade four-ring PAHs, anthraquinone-type dyes, and oil, with the simultaneous production of an extracellular Mn-peroxidase.


Assuntos
Poluentes Ambientais/metabolismo , Hypocreales/isolamento & purificação , Hypocreales/metabolismo , Óleos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Biotransformação , Microbiologia Ambiental , Enzimas/análise , Hypocreales/classificação , Hypocreales/enzimologia , Madeira/microbiologia
19.
FEMS Microbiol Lett ; 366(24)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960895

RESUMO

Marine fungi are part of the huge and understudied biodiversity hosted in the sea. To broaden the knowledge on fungi inhabiting the Mediterranean Sea and their role in sponge holobiont, three sponges namely Aplysina cavernicola, Crambe crambe and Phorbas tenacior were collected in Villefranche sur Mer, (France) at about 25 m depth. The fungal communities associated with the sponges were isolated using different techniques to increase the numbers of fungi isolated. All fungi were identified to species level giving rise to 19, 13 and 3 species for P. tenacior, A. cavernicola and C. crambe, respectively. Of note, 35.7% and 50.0% of the species detected were either reported for the first time in the marine environment or in association with sponges. The mini-satellite analysis confirmed the uniqueness of the mycobiota of each sponge, leading to think that the sponge, with its metabolome, may shape the microbial community.


Assuntos
Crambe (Esponja)/microbiologia , Microbiota , Animais , Biodiversidade , Fungos/isolamento & purificação , Mar Mediterrâneo , Filogenia , Poríferos/microbiologia , Água do Mar/microbiologia
20.
Water Res ; 42(12): 2911-20, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18406442

RESUMO

Textile effluents, in addition to high COD, display several problems mainly due to toxicity and recalcitrance of dyestuffs. Innovative technologies effective in removing dyes from large volumes of effluents at low cost and in a timely fashion are needed. Fungi are among the most promising organisms for dye biosorption. In this study dye decolourisation, COD and toxicity decrease of three wastewater models after the treatment with inactivated biomasses of three Mucorales fungi cultured on two different media were evaluated. Fungal biomasses displayed good sorption capabilities giving rise to decolourisation percentages up to 94% and decrease in COD up to 58%. The Lemna minor toxicity test showed a significant reduction of toxicity after biosorption treatments, indicating that decolourisation corresponds to an actual detoxification of the treated wastewaters.


Assuntos
Fungos/metabolismo , Resíduos Industriais , Indústria Têxtil , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA