Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 217(Pt 20): 3637-44, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25189370

RESUMO

Frog locomotion has attracted wide scientific interest because of the unusual and derived morphology of the frog pelvic girdle and hind limb. Previous authors have suggested that the design of the frog locomotor system evolved towards a specialized jumping morphology early in the radiation of the group. However, data on locomotion in frogs are biased towards a few groups and most of the ecological and functional diversity remains unexplored. Here, we examine the kinematics of swimming in eight species of frog with different ecologies. We use cineradiography to quantify movements of skeletal elements from the entire appendicular skeleton. Our results show that species with different ecologies do differ in the kinematics of swimming, with the speed of limb extension and especially the kinematics of the midfoot being different. Our results moreover suggest that this is not a phylogenetic effect because species from different clades with similar ecologies converge on the same swimming kinematics. We conclude that it is important to analyze frog locomotion in a broader ecological and evolutionary context if one is to understand the evolutionary origins of this behavior.


Assuntos
Anuros/anatomia & histologia , Ecossistema , Extremidades/anatomia & histologia , Natação , Animais , Evolução Biológica , Fenômenos Biomecânicos , Filogenia , Esqueleto
2.
PLoS One ; 15(8): e0237366, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32834000

RESUMO

The modern Gobioidei (Teleostei) comprise eight families, but the extinct †Pirskeniidae from the lower Oligocene of the Czech Republic indicate that further families may have existed in the past. However, the validity of the †Pirskeniidae has been questioned and its single genus †Pirskenius has been assigned to the extant family Eleotridae in previous works. The objective of this study is to clarify the status of the †Pirskeniidae. Whether or not the †Pirskeniidae should be synonymised with the Eleotridae is also interesting from a biogeographical point of view as Eleotridae is not present in Europe or the Mediterranean Sea today. We present new specimens and re-examine the material on which the two known species of †Pirskenius are based (†P. diatomaceus Obrhelová, 1961; †P. radoni Prikryl, 2014). To provide a context for phylogenetically informative characters related to the palatine and the branchiostegal rays, three early-branching gobioids (Rhyacichthys, Protogobius, Perccottus), an eleotrid (Eleotris) and a gobiid (Gobius) were subjected to micro-CT analysis. The new data justify revalidation of the family †Pirskeniidae, and a revised diagnosis is presented for both †Pirskenius and †Pirskeniidae. Moreover, we provide for the first time an attempt to relate a fossil gobioid to extant taxa based on phylogenetic analysis. The results indicate a sister-group relationship of †Pirskeniidae to the Thalasseleotrididae + Gobiidae + Oxudercidae clade. Considering the fossil record, the arrival of gobioids in freshwater habitats in the early Oligocene apparently had generated new lineages that finally were not successful and became extinct shortly after they had diverged. There is currently no evidence that the Eleotridae was present in the European ichthyofauna in the past.


Assuntos
Evolução Biológica , Perciformes , Filogenia , Animais , Geologia
3.
J Anat ; 214(1): 100-39, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19166476

RESUMO

Comparative analysis of the anuran pelvic and thigh musculoskeletal system revealed that the thigh extensors, responsible for the initial phase of jump, the propulsive stroke in swimming and, if used asynchronously, also for walking, are least affected by the transformations observed between anurans and their temnospondyl ancestors (as reflected in contemporary caudates). The iliac shaft and urostyle, two of the most important anuran apomorphies, represent skeletal support for muscles that are mostly protractors of the femur or are important in attaining a crouching position, a necessary prerequisite for rapid escape. All of these muscles originate or insert on the iliac shaft. As the orientation of the pubis, ischium and ilium is the same in anurans, caudates and by inference also in their temnospondyl ancestors, it is probable that the pelvis was shifted from the sacral vertebra posteriorly along the reduced and stiffened tail (urostyle) by the elongation of the illiac shaft. Thus, the original vertical orientation of the ilium was maintained (which is also demonstrated by stable origins of the glutaeus maximus, iliofemoralis and iliofibularis on the tuber superius) and the shaft itself is a new structure. A review of functional analysis of anuran locomotion suggests some clear differences from that in caudates, suggesting that terrestrial jumping may have been a primary locomotor activity, from which other types of anuran locomotion are derived.


Assuntos
Anuros/anatomia & histologia , Evolução Biológica , Músculo Esquelético/anatomia & histologia , Adaptação Fisiológica , Animais , Locomoção/fisiologia , Masculino , Pelve , Filogenia , Coxa da Perna
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA