RESUMO
Glial cells and central nervous system (CNS)-infiltrating leukocytes contribute to multiple sclerosis (MS). However, the networks that govern crosstalk among these ontologically distinct populations remain unclear. Here, we show that, in mice and humans, CNS-resident astrocytes and infiltrating CD44hiCD4+ T cells generated interleukin-3 (IL-3), while microglia and recruited myeloid cells expressed interleukin-3 receptor-É (IL-3RÉ). Astrocytic and T cell IL-3 elicited an immune migratory and chemotactic program by IL-3RÉ+ myeloid cells that enhanced CNS immune cell infiltration, exacerbating MS and its preclinical model. Multiregional snRNA-seq of human CNS tissue revealed the appearance of IL3RA-expressing myeloid cells with chemotactic programming in MS plaques. IL3RA expression by plaque myeloid cells and IL-3 amount in the cerebrospinal fluid predicted myeloid and T cell abundance in the CNS and correlated with MS severity. Our findings establish IL-3:IL-3RA as a glial-peripheral immune network that prompts immune cell recruitment to the CNS and worsens MS.
Assuntos
Esclerose Múltipla , Animais , Humanos , Camundongos , Sistema Nervoso Central , Interleucina-3 , Microglia , Neuroglia/metabolismoRESUMO
Maternal obesity disturbs brain-gut-microbiota interactions and induces negative affect in the offspring, but its impact on gut and brain metabolism in the offspring (F1) are unknown. Here, we tested whether perinatal intake of a multispecies probiotic could mitigate the abnormal emotional behavior in the juvenile and adult offspring of obese dams. Untargeted NMR-based metabolomic profiling and gene-expression analysis throughout the gut-brain axis were then used to investigate the biology underpinning behavioral changes in the dams and their offspring. Prolonged high-fat diet feeding reduced maternal gut short-chain fatty acid abundance, increased markers of peripheral inflammation, and decreased the abundance of neuroactive metabolites in maternal milk during nursing. Both juvenile (postnatal day [PND] 21) and adult (PND112) offspring of obese dams exhibited increased anxiety-like behavior, which were prevented by perinatal probiotic exposure. Maternal probiotic treatment increased gut butyrate and brain lactate in the juvenile and adult offspring and increased the expression of prefrontal cortex PFKFB3, a marker of glycolytic metabolism in astrocytes. PFKFB3 expression correlated with the increase in gut butyrate in the juvenile and adult offspring. Maternal obesity reduced synaptophysin expression in the adult offspring, while perinatal probiotic exposure increased expression of brain-derived neurotrophic factor. Finally, we showed that the resilience of juvenile and adult offspring to anxiety-like behavior was most prominently associated with increased brain lactate abundance, independent of maternal group. Taken together, we show that maternal probiotic supplementation exerts a long-lasting effect on offspring neuroplasticity and the offspring gut-liver-brain metabolome, increasing resilience to emotional dysfunction induced by maternal obesity.
Assuntos
Encéfalo/metabolismo , Emoções , Microbioma Gastrointestinal , Metaboloma , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Masculino , GravidezRESUMO
Tumor necrosis factor (TNF) has well-established roles in neuroinflammatory disorders, but the effect of TNF on the biochemistry of brain cells remains poorly understood. Here, we microinjected TNF into the brain to study its impact on glial and neuronal metabolism (glycolysis, pentose phosphate pathway, citric acid cycle, pyruvate dehydrogenase, and pyruvate carboxylase pathways) using 13C NMR spectroscopy on brain extracts following intravenous [1,2-13C]-glucose (to probe glia and neuron metabolism), [2-13C]-acetate (probing astrocyte-specific metabolites), or [3-13C]-lactate. An increase in [4,5-13C]-glutamine and [2,3-13C]-lactate coupled with a decrease in [4,5-13C]-glutamate was observed in the [1,2-13C]-glucose-infused animals treated with TNF. As glutamine is produced from glutamate by astrocyte-specific glutamine synthetase the increase in [4,5-13C]-glutamine reflects increased production of glutamine by astrocytes. This was confirmed by infusion with astrocyte substrate [2-13C]-acetate. As lactate is metabolized in the brain to produce glutamate, the simultaneous increase in [2,3-13C]-lactate and decrease in [4,5-13C]-glutamate suggests decreased lactate utilization, which was confirmed using [3-13C]-lactate as a metabolic precursor. These results suggest that TNF rearranges the metabolic network, disrupting the energy supply chain perturbing the glutamine-glutamate shuttle between astrocytes and the neurons. These insights pave the way for developing astrocyte-targeted therapeutic strategies aimed at modulating effects of TNF to restore metabolic homeostasis in neuroinflammatory disorders.
Assuntos
Astrócitos , Encéfalo , Ácido Glutâmico , Glutamina , Neurônios , Fator de Necrose Tumoral alfa , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Ácido Láctico/metabolismo , Glucose/metabolismo , Masculino , Ciclo do Ácido Cítrico/efeitos dos fármacos , Isótopos de Carbono , Glicólise/efeitos dos fármacos , Acetatos/farmacologia , Acetatos/metabolismo , Piruvato Carboxilase/metabolismo , Via de Pentose Fosfato/efeitos dos fármacosRESUMO
A range of studies suggest that a proportion of psychosis may have an autoimmune basis, but this has not translated through into clinical practice-there is no biochemical test able to accurately identify psychosis resulting from an underlying inflammatory cause. Such a test would be an important step towards identifying who might require different treatments and have the potential to improve outcomes for patients. To identify novel subgroups within patients with acute psychosis we measured the serum nuclear magnetic resonance (NMR) metabolite profiles of 75 patients who had identified antibodies (anti-glycine receptor [GlyR], voltage-gated potassium channel [VGKC], Contactin-associated protein-like 2 [CASPR2], leucine-rich glioma inactivated 1 [LGI1], N-methyl-D-aspartate receptor [NMDAR] antibody) and 70 antibody negative patients matched for age, gender, and ethnicity. Clinical symptoms were assessed using the positive and negative syndrome scale (PANSS). Unsupervised principal component analysis identified two distinct biochemical signatures within the cohort. Orthogonal partial least squared discriminatory analysis revealed that the serum metabolomes of NMDAR, LGI1, and CASPR2 antibody psychosis patients were indistinct from the antibody negative control group while VGKC and GlyR antibody patients had significantly decreased lipoprotein fatty acids and increased amino acid concentrations. Furthermore, these patients had more severe presentation with higher PANSS scores than either the antibody negative controls or the NMDAR, LGI1, and CASPR2 antibody groups. These results suggest that a proportion of patients with acute psychosis have a distinct clinical and biochemical phenotype that may indicate an inflammatory subtype.
Assuntos
Transtornos Psicóticos , Humanos , Autoanticorpos , Peptídeos e Proteínas de Sinalização Intracelular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/sangue , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Transtornos Psicóticos/sangue , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/metabolismo , Receptores de N-Metil-D-Aspartato/sangue , Receptores de N-Metil-D-Aspartato/química , Biomarcadores , Espectroscopia de Ressonância Magnética , Inflamação/sangue , Inflamação/complicações , Inflamação/metabolismoRESUMO
Endotoxemia and sepsis induce neuroinflammation and increase the risk of neurodegenerative disorders although the mechanism by which peripheral infection leads to brain inflammation is not well understood. While circulating serum lipoproteins are known immunometabolites with the potential to modulate the acute phase response and cross the blood brain barrier, their contribution to neuroinflammation during systemic infection is unknown. The objective of this study was to elucidate the mechanisms by which lipoprotein subclasses modulate lipopolysaccharide (LPS)-induced neuroinflammation. Adult C57BL/6 mice were divided into 6 treatment groups, including a sterile saline vehicle control group (n = 9), an LPS group (n = 11), a premixed LPS + HDL group (n = 6), a premixed LPS + LDL group (n = 5), a HDL only group (n = 6) and an LDL only group (n = 3). In all cases injections were administered intraperitoneally. LPS was administered at 0.5 mg/kg, and lipoproteins were administered at 20 mg/kg. Behavioural testing and tissue collection was performed 6 h post-injection. The magnitude of peripheral and central inflammation was determined by qPCR of pro-inflammatory genes in fresh liver and brain. Metabolite profiles of liver, plasma and brain were determined by 1H NMR. Endotoxin concentration in the brain was measured by the Limulus Amoebocyte Lysate (LAL) assay. Co-administration of LPS + HDL exacerbated both peripheral and central inflammation, whilst LPS + LDL attenuated this inflammation. Metabolomic analysis identified several metabolites significantly associated with LPS-induced inflammation, which were partially rescued by LDL, but not HDL. Endotoxin was detected at significantly greater concentrations in the brains of animals that received LPS + HDL compared to LPS + saline, but not those that received LPS + LDL. These results suggest that HDL may promote neuroinflammation through direct shuttling of endotoxin to the brain. In contrast, LDL was shown to have anti-neuroinflammatory properties in this study. Our results indicate that lipoproteins may be useful targets in neuroinflammation and neurodegeneration associated with endotoxemia and sepsis.
Assuntos
Encefalite , Endotoxemia , Sepse , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Lipoproteínas , Inflamação/induzido quimicamente , Endotoxinas/efeitos adversosRESUMO
BACKGROUND: Despite widespread searches, there are currently no validated biofluid markers for the detection of subclinical neuroinflammation in multiple sclerosis (MS). The dynamic nature of human metabolism in response to changes in homeostasis, as measured by metabolomics, may allow early identification of clinically silent neuroinflammation. Using the delayed-type hypersensitivity (DTH) MS rat model, we investigated the serum and cerebrospinal fluid (CSF) metabolomics profiles and neurofilament-light chain (NfL) levels, as a putative marker of neuroaxonal damage, arising from focal, clinically silent neuroinflammatory brain lesions and their discriminatory abilities to distinguish DTH animals from controls. METHODS: 1H nuclear magnetic resonance (NMR) spectroscopy metabolomics and NfL measurements were performed on serum and CSF at days 12, 28 and 60 after DTH lesion initiation. Supervised multivariate analyses were used to determine metabolomics differences between DTH animals and controls. Immunohistochemistry was used to assess the extent of neuroinflammation and tissue damage. RESULTS: Serum and CSF metabolomics perturbations were detectable in DTH animals (vs. controls) at all time points, with the greatest change occurring at the earliest time point (day 12) when the neuroinflammatory response was most intense (mean predictive accuracy [SD]-serum: 80.6 [10.7]%, p < 0.0001; CSF: 69.3 [13.5]%, p < 0.0001). The top discriminatory metabolites at day 12 (serum: allantoin, cytidine; CSF: glutamine, glucose) were all reduced in DTH animals compared to controls, and correlated with histological markers of neuroinflammation, particularly astrogliosis (Pearson coefficient, r-allantoin: r = - 0.562, p = 0.004; glutamine: r = - 0.528, p = 0.008). Serum and CSF NfL levels did not distinguish DTH animals from controls at day 12, rather, significant differences were observed at day 28 (mean [SEM]-serum: 38.5 [4.8] vs. 17.4 [2.6] pg/mL, p = 0.002; CSF: 1312.0 [379.1] vs. 475.8 [74.7] pg/mL, p = 0.027). Neither serum nor CSF NfL levels correlated with markers of neuroinflammation; serum NfL did, however, correlate strongly with axonal loss (r = 0.641, p = 0.001), but CSF NfL did not (p = 0.137). CONCLUSIONS: While NfL levels were elevated later in the pathogenesis of the DTH lesion, serum and CSF metabolomics were able to detect early, clinically silent neuroinflammation and are likely to present sensitive biomarkers for the assessment of subclinical disease activity in patients.
Assuntos
Esclerose Múltipla , Alantoína , Animais , Biomarcadores , Citidina , Modelos Animais de Doenças , Glucose , Glutamina , Humanos , Filamentos Intermediários , Esclerose Múltipla/líquido cefalorraquidiano , Proteínas de Neurofilamentos , RatosRESUMO
BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) and IgG4-related sclerosing cholangitis (IgG4-SC) are chronic fibro-inflammatory immune-mediated hepatobiliary conditions that are challenging to distinguish in a clinical setting. Accurate non-invasive biomarkers for discriminating PSC and IgG4-SC are important to ensure a correct diagnosis, prompt therapy and adequate cancer surveillance. METHODS: We performed nuclear magnetic resonance (NMR)-based metabolomic profiling using serum samples collected prospectively from patients with PSC (n = 100), IgG4-SC (n = 23) and healthy controls (HC; n = 16). RESULTS: Multivariate analysis of the serum metabolome discriminated PSC from IgG4-SC with greater accuracy (AUC 0.95 [95%CI 0.90-0.98]) than IgG4 titre (AUC 0.87 [95%CI 0.79-0.94]). When inflammatory bowel disease (IBD) was excluded as a comorbid condition (IgG4-SC n = 20, PSC n = 22), the diagnostic AUC increased to 1.0, suggesting that the metabolome differences identified are not a result of the increased prevalence of IBD in PSC relative to IgG4-SC patients. Serum lactate (p < .0001), glucose (p < .01) and glutamine (p < .01) metabolites were increased in IgG4-related disease (IgG4-RD) and IgG4-SC individuals compared to PSC, whereas mobile choline (p < .05), 3-hydroxybutyric acid (p < .01) and -CH3 lipoprotein resonances (p < .01) were decreased. CONCLUSIONS: Taken together, serum metabolomic profiling has the potential to be incorporated as a diagnostic criterion, independent of IgG4 titre, to improve the diagnosis of IgG4-RD and help distinguish IgG4-SC from PSC.
Assuntos
Colangite Esclerosante , Doença Relacionada a Imunoglobulina G4 , Doenças Inflamatórias Intestinais , Biomarcadores , Colangite Esclerosante/patologia , Diagnóstico Diferencial , Humanos , Imunoglobulina G , Doença Relacionada a Imunoglobulina G4/diagnóstico , Inflamação/diagnóstico , Doenças Inflamatórias Intestinais/diagnósticoRESUMO
Compelling evidence links enteric microbes to brain function and behavior. Galacto-oligosaccharide prebiotics have been shown to modulate the composition of gut flora and induce metabolic, neurochemical, and behavioral changes in adult rodents. Despite the brain being most susceptible to environmental factors, such as nutrients and toxins, during the earliest stages of development, it is unknown whether maternal prebiotic supplementation during gestation and lactation influences the offspring gut microbiome, brain, or behavior. The aim of this study was to test whether maternal galacto-oligosaccharide intake during pregnancy and lactation alters the brain and behavior in naïve and endotoxin-challenged offspring. CD1 female mice received either normal drinking water or water supplemented with Bimuno® galacto-oligosaccharides (B-GOS) during gestation and suckling. Offspring behavior was tested at weaning age or adulthood, and a cross-foster design was employed in a separate cohort to differentiate between effects of prenatal and postnatal maternal B-GOS intake. Lipopolysaccharide was also administered to pups at postnatal day 9 to determine whether maternal B-GOS influences the neurobiological and behavioral effects of a neonatal pro-inflammatory challenge in adulthood. Fecal microbiome composition and metabolites were analyzed to explore potential relationships between the maternal microbiome, the offspring gut microbiome, and the offspring brain and behavior. Maternal B-GOS supplementation increased exploratory behavior and reduced expression of hippocampal glutamate receptor genes in young, weaning-age offspring. In addition, postnatal, but not prenatal, B-GOS supplementation increased fecal butyrate and propionate levels. Finally, in adult offspring, perinatal B-GOS intake increased cortical glutamate receptor subunits in females, increased social preference, and reduced anxiety. We provide novel and comprehensive evidence for the influence of maternal prebiotic intake on offspring behavior, brain gene expression, and gut microbiome composition in mice.
Assuntos
Dieta , Prebióticos , Animais , Ansiedade , Encéfalo , Feminino , Expressão Gênica , Camundongos , GravidezRESUMO
BACKGROUND AND PURPOSE: Foveal changes were reported in aquaporin-4 antibody (AQP4-Ab) seropositive neuromyelitis optica spectrum disorder (NMOSD) patients; however, it is unclear whether they are independent of optic neuritis (ON), stem from subclinical ON or crossover from ON in fellow eyes. Fovea morphometry and a statistical classification approach were used to investigate if foveal changes in NMOSD are independent of ON and progressive. METHODS: This was a retrospective longitudinal study of 27 AQP4-IgG + NMOSD patients (49 eyes; 15 ON eyes and 34 eyes without a history of ON [NON eyes]), follow-up median (first and third quartile) 2.32 (1.33-3.28), and 38 healthy controls (HCs) (76 eyes), follow-up median (first and third quartile) 1.95 (1.83-2.54). The peripapillary retinal nerve fibre layer thickness and the volume of combined ganglion cell and inner plexiform layer as measures of neuroaxonal damage from ON were determined by optical coherence tomography. Nineteen foveal morphometry parameters were extracted from macular optical coherence tomography volume scans. Data were analysed using orthogonal partial least squares discriminant analysis and linear mixed effects models. RESULTS: At baseline, foveal shape was significantly altered in ON eyes and NON eyes compared to HCs. Discriminatory analysis showed 81% accuracy distinguishing ON vs. HCs and 68% accuracy in NON vs. HCs. NON eyes were distinguished from HCs by foveal shape parameters indicating widening. Orthogonal partial least squares discriminant analysis discriminated ON vs. NON with 76% accuracy. In a follow-up of 2.4 (20.85) years, no significant time-dependent foveal changes were found. CONCLUSION: The parafoveal area is altered in AQP4-Ab seropositive NMOSD patients suggesting independent neuroaxonal damage from subclinical ON. Longer follow-ups are needed to confirm the stability of the parafoveal structure over time.
Assuntos
Neuromielite Óptica , Neurite Óptica , Aquaporina 4 , Humanos , Estudos Longitudinais , Neuromielite Óptica/complicações , Neuromielite Óptica/diagnóstico por imagem , Estudos Retrospectivos , Tomografia de Coerência ÓpticaRESUMO
Analysis of metabolites in biofluids using nuclear magnetic resonance often requires the suppression of obscuring signals arising from water and macromolecules. This paper analyses the limitations of the pulse sequence most commonly used to achieve such suppression (presat-CPMG) and proposes new pulse sequences that do not share those limitations. The utility of these improved pulse sequences is demonstrated in a metabolomic study of multiple sclerosis (MS) patients.
Assuntos
Análise Química do Sangue/métodos , Substâncias Macromoleculares/química , Espectroscopia de Ressonância Magnética/métodos , Água/química , Humanos , Metaboloma , Metabolômica/métodos , Esclerose Múltipla/sangue , Esclerose Múltipla/metabolismoRESUMO
Brain imaging characteristics of MOG antibody disease are largely unknown and it is unclear whether they differ from those of multiple sclerosis and AQP4 antibody disease. The aim of this study was to identify brain imaging discriminators between those three inflammatory central nervous system diseases in adults and children to support diagnostic decisions, drive antibody testing and generate disease mechanism hypotheses. Clinical brain scans of 83 patients with brain lesions (67 in the training and 16 in the validation cohort, 65 adults and 18 children) with MOG antibody (n = 26), AQP4 antibody disease (n = 26) and multiple sclerosis (n = 31) recruited from Oxford neuromyelitis optica and multiple sclerosis clinical services were retrospectively and anonymously scored on a set of 29 predefined magnetic resonance imaging features by two independent raters. Principal component analysis was used to perform an overview of patients without a priori knowledge of the diagnosis. Orthogonal partial least squares discriminant analysis was used to build models separating diagnostic groups and identify best classifiers, which were then tested on an independent cohort set. Adults and children with MOG antibody disease frequently had fluffy brainstem lesions, often located in pons and/or adjacent to fourth ventricle. Children across all conditions showed more frequent bilateral, large, brainstem and deep grey matter lesions. MOG antibody disease spontaneously separated from multiple sclerosis but overlapped with AQP4 antibody disease. Multiple sclerosis was discriminated from MOG antibody disease and from AQP4 antibody disease with high predictive values, while MOG antibody disease could not be accurately discriminated from AQP4 antibody disease. Best classifiers between MOG antibody disease and multiple sclerosis were similar in adults and children, and included ovoid lesions adjacent to the body of lateral ventricles, Dawson's fingers, T1 hypointense lesions (multiple sclerosis), fluffy lesions and three lesions or less (MOG antibody). In the validation cohort patients with antibody-mediated conditions were differentiated from multiple sclerosis with high accuracy. Both antibody-mediated conditions can be clearly separated from multiple sclerosis on conventional brain imaging, both in adults and children. The overlap between MOG antibody oligodendrocytopathy and AQP4 antibody astrocytopathy suggests that the primary immune target is not the main substrate for brain lesion characteristics. This is also supported by the clear distinction between multiple sclerosis and MOG antibody disease both considered primary demyelinating conditions. We identify discriminatory features, which may be useful in classifying atypical multiple sclerosis, seronegative neuromyelitis optica spectrum disorders and relapsing acute disseminated encephalomyelitis, and characterizing cohorts for antibody discovery.
Assuntos
Aquaporina 4/imunologia , Autoanticorpos/metabolismo , Encéfalo/diagnóstico por imagem , Doenças do Sistema Nervoso Central , Esclerose Múltipla/diagnóstico por imagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Adolescente , Adulto , Fatores Etários , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/metabolismo , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/metabolismo , Análise de Componente Principal , Estudos RetrospectivosRESUMO
Clinical manifestations of Niemann-Pick type C1 (NP-C1) disease include neonatal hepatosplenomegaly and in some patients progressive liver dysfunction and failure. This study involved a 1H NMR-linked metabolomics analysis of liver samples collected from a NP-C1 disease mutant mouse model in order to explore time-dependent imbalances in metabolic pathways associated with NP-C1 liver dysfunction, including fibrosis. NP-C1 mutant (Npc1-/-; NP-C1), control (Npc1+/+; WT), and NP-C1 heterozygous mice (Npc1+/-; HET) were generated from heterozygote matings. Aqueous extracts of these liver samples collected at time points of 3, 6, 9, and 11 weeks were subjected to high-resolution NMR analysis, and multivariate (MV) metabolomics analyses of data sets acquired were performed. A MV random forests (RFs) model effectively discriminated between NP-C1 and a combined WT/HET hepatic NMR profiles with very high predictive accuracy and reliability. Key distinguishing features included significant upregulations in the hepatic concentrations of phenylalanine, tyrosine, glutamate, lysine/ornithine, valine, threonine, and hypotaurine/methionine, and diminished levels of nicotinate/niacinamide, inosine, phosphoenolpyruvate, and 3-hydroxyphenylacetate. Quantitative pathway topological analysis confirmed that imbalances in tyrosine biosynthesis, and hepatic phenylalanine, tyrosine, glutamate/glutamine, and nicotinate/niacinamide metabolism were involved in the pathogenesis of NP-C1 disease-associated liver dysfunction/damage. 1H NMR-linked metabolomics analysis provides valuable biomarker information regarding hepatic dysfunction or damage in NP-C1 disease.
Assuntos
Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Metabolômica , Doença de Niemann-Pick Tipo C/metabolismo , Animais , Biomarcadores , Modelos Animais de Doenças , Hepatopatias , Redes e Vias Metabólicas , Camundongos , Fatores de TempoRESUMO
The International Mouse Phenotyping Consortium program has been established to ascribe biological functions to systematically knocked-out (KO) genes by in vivo and ex vivo phenotyping. The plasma clinical chemistry screen includes an assessment of liver, kidney, and bone function and provides a basic lipid profile and histopathology reports on 32 tissues. We report on the inclusion of plasma analysis by proton nuclear magnetic resonance ((1)H NMR) spectroscopy. (1)H NMR spectroscopy data are summarized from 116 running baseline controls with 18 homozygous and 2 heterozygous KO mouse lines along with wild-type controls (typically n = 7 per gender). For the baseline group, the intersample variation of (1)H NMR glucose measurement was 12%, and the (1)H NMR spectroscopy data were influenced by gender and feeding status. There were good correlations between the clinical chemistry and the (1)H NMR spectroscopy measurements for glucose, triglycerides, and HDL cholesterol. Significant differences were observed in two KO lines, Agl (MGI: 1924809) and Bbs5 (MGI: 1919819), by (1)H NMR spectroscopy, clinical chemistry, and histopathology. In a further two KO lines, Elmod1 (MGI: 3583900) and Emc10 (MGI: 1916933), (1)H NMR metabolic differences were observed, but no other ex vivo changes were detected. In the remaining 16 lines, no ex vivo abnormal phenotypes were observed. Plasma (1)H NMR spectroscopy can therefore provide a novel perspective on the function of knocked-out genes.
Assuntos
Metaboloma , Camundongos Knockout/sangue , Fenótipo , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Feminino , Heterozigoto , Homozigoto , Rim/química , Rim/metabolismo , Fígado/química , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Análise de Componente Principal , Espectroscopia de Prótons por Ressonância MagnéticaRESUMO
The C-type lectin DC-SIGNR (dendritic cell-specific ICAM-3-grabbing non-integrin-related; also known as L-SIGN or CD299) is a promising drug target due to its ability to promote infection and/or within-host survival of several dangerous pathogens (e.g. HIV and severe acute respiratory syndrome coronavirus (SARS)) via interactions with their surface glycans. Crystallography has provided excellent insight into the mechanism by which DC-SIGNR interacts with small glycans, such as (GlcNAc)2Man3; however, direct observation of complexes with larger, physiological oligosaccharides, such as Man9GlcNAc2, remains elusive. We have utilized solution-state nuclear magnetic resonance spectroscopy to investigate DC-SIGNR binding and herein report the first backbone assignment of its active, calcium-bound carbohydrate recognition domain. Direct interactions with the small sugar fragments Man3, Man5, and (GlcNAc)2Man3 were investigated alongside Man9GlcNAc derived from recombinant gp120 (present on the HIV viral envelope), providing the first structural data for DC-SIGNR in complex with a virus-associated ligand, and unique binding modes were observed for each glycan. In particular, our data show that DC-SIGNR has a different binding mode for glycans on the HIV viral envelope compared with the smaller glycans previously observed in the crystalline state. This suggests that using the binding mode of Man9GlcNAc, instead of those of small glycans, may provide a platform for the design of DC-SIGNR inhibitors selective for high mannose glycans (like those on HIV). (15)N relaxation measurements provided the first information on the dynamics of the carbohydrate recognition domain, demonstrating that it is a highly flexible domain that undergoes ligand-induced conformational and dynamic changes that may explain the ability of DC-SIGNR to accommodate a range of glycans on viral surfaces.
Assuntos
Moléculas de Adesão Celular/metabolismo , HIV/química , Lectinas Tipo C/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Oligossacarídeos/metabolismo , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Moléculas de Adesão Celular/química , Lectinas Tipo C/química , Modelos Moleculares , Oligossacarídeos/química , Polissacarídeos/química , Ligação Proteica , Receptores de Superfície Celular/químicaRESUMO
Following in the footsteps of genomics and proteomics, metabolomics has revolutionised the way we investigate and understand biological systems. Rapid development in the last 25 years has been driven largely by technical innovations in mass spectrometry and nuclear magnetic resonance spectroscopy. However, despite the modest size of metabolomes relative to proteomes and genomes, methodological capabilities for robust, comprehensive metabolite analysis remain a major challenge. Therefore, development of new methods and techniques remains vital for progress in the field. Here, we review developments in LC-MS, GC-MS and NMR methods in the last few years that have enhanced quantitative and comprehensive metabolome coverage, highlighting the techniques involved, their technical capabilities, relative performance, and potential impact.
Assuntos
Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica , Metabolômica/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Humanos , Animais , Cromatografia Líquida/métodos , MetabolomaRESUMO
Introduction: Post-infection syndromes are characterised by fatigue, muscle pain, anhedonia, and cognitive impairment; mechanistic studies exploring these syndromes have focussed on pathways downstream of Toll-like receptor (TLR) 4 activation. Here, we investigated the mechanistic interplay between behaviour, metabolism, and inflammation downstream of TLR-7 activation compared to TLR-4 activation in male and female CD1 mice. Methods: Animals received either a TLR-4 (LPS; 0.83 mg/kg) or TLR-7 (R848, 5 mg/kg) agonist, or saline, and behaviour was analysed in an Open Field (OF) at 24 h (n = 20/group). Plasma, liver, and prefrontal cortex (PFC) were collected for gene expression analysis at 24 h and 1H-NMR metabolomics. Results: TLR-4 and TLR-7 activation decreased distance travelled and rearing in the OF, but activation of each receptor induced distinct cytokine responses and metabolome profiles. LPS increased IL-1ß expression and CXCL1 in the PFC, but TLR7 activation did not and strongly induced PFC CXCL10 expression. Thus, TLR7 induced sickness behaviour is independent of IL-1ß expression. In both cases, the behavioural response to TLR activation was sexually dimorphic: females were more resilient. However, dissociation was observed between the resilient female mice behaviour and the levels of gene cytokine expression, which was, in general, higher in the female mice. However, the metabolic shifts induced by immune activation were better correlated with the sex-dependent behavioural dimorphisms; increased levels of antioxidant potential in the female brain are intrinsic male/female metabolome differences. A common feature of both TLR4 and TLR7 activation was an increase in N-acetyl aspartate (NAA) in the PFC, which is likely be an allostatic response to the challenges as sickness behaviour is inversely correlated with NAA levels. Discussion: The results highlight how the cytokine profile induced by one PAMP cannot be extrapolated to another, but they do reveal how the manipulation of the conserved metabolome response might afford a more generic approach to the treatment of post-infection syndromes.
RESUMO
Cancer detection is challenging, especially in patients with unspecific cancer symptoms. Biomarkers could identify patients at high risk of cancer. Prior studies indicate that neutrophil extracellular traps (NETs) are associated with cancer, but also with autoimmune and infectious diseases. The objective of this prospective study was to investigate markers associated with NET formation (nucleosomal citrullinated histone 3 [H3Cit-DNA], cell free DNA [cfDNA] and neutrophil elastase [NE]), and c-reactive protein (CRP) in patients with unspecific cancer symptoms, such as fatigue, weight loss or radiological sign of malignancy without an apparent primary tumor, referred to the Diagnostic Center at Danderyd Hospital in Sweden. Blood samples were drawn on admission, before cancer diagnosis. Out of 475 patients, 160 (34%) were diagnosed with cancer, 56 (12%) with autoimmune disease, 32 (7%) with infectious disease, 71 (15%) with other diseases and 156 (33%) received no diagnosis. H3Cit-DNA, cfDNA, NE and CRP were significantly higher in patients with cancer compared to patients without cancer (p < 0.0001, p < 0.0001, p = 0.004, and p = 0.0002 respectively). H3Cit-DNA, but not cfDNA, NE or CRP, was significantly elevated in patients with cancer compared to patients with autoimmune disease (p = 0.0001). H3Cit-DNA, cfDNA, NE or CRP did not differ between cancer and infectious disease. In conclusion, H3Cit-DNA is elevated in patients diagnosed with cancer compared to non-cancer patients with the same symptomatology. Further studies should evaluate if H3Cit-DNA could aid in selecting patients that would benefit the most from a rapid cancer diagnostic work-up.
RESUMO
OBJECTIVE: Differentiating forms of autoimmune encephalitis (AE) from other causes of seizures helps expedite immunotherapies in AE patients and informs studies regarding their contrasting pathophysiology. We aimed to investigate whether and how Nuclear Magnetic Resonance (NMR)-based metabolomics could differentiate AE from drug-resistant epilepsy (DRE), and stratify AE subtypes. METHODS: This study recruited 238 patients: 162 with DRE and 76 AE, including 27 with contactin-associated protein-like 2 (CASPR2), 29 with leucine-rich glioma inactivated 1 (LGI1) and 20 with N-methyl-d-aspartate receptor (NMDAR) antibodies. Plasma samples across the groups were analyzed using NMR spectroscopy and compared with multivariate statistical techniques, such as orthogonal partial least squares discriminant analysis (OPLS-DA). RESULTS: The OPLS-DA model successfully distinguished AE from DRE patients with a high predictive accuracy of 87.0 ± 3.1% (87.9 ± 3.4% sensitivity and 86.3 ± 3.6% specificity). Further, pairwise OPLS-DA models were able to stratify the three AE subtypes. Plasma metabolomic signatures of AE included decreased high-density lipoprotein (HDL, -(CH2)n-, -CH3), phosphatidylcholine and albumin (lysyl moiety). AE subtype-specific metabolomic signatures were also observed, with increased lactate in CASPR2, increased lactate, glucose, and decreased unsaturated fatty acids (UFA, -CH2CH=) in LGI1, and increased glycoprotein A (GlycA) in NMDAR-antibody patients. INTERPRETATION: This study presents the first non-antibody-based biomarker for differentiating DRE, AE and AE subtypes. These metabolomics signatures underscore the potential relevance of lipid metabolism and glucose regulation in these neurological disorders, offering a promising adjunct to facilitate the diagnosis and therapeutics.
Assuntos
Epilepsia Resistente a Medicamentos , Encefalite , Humanos , Feminino , Epilepsia Resistente a Medicamentos/sangue , Epilepsia Resistente a Medicamentos/diagnóstico , Masculino , Adulto , Encefalite/sangue , Encefalite/diagnóstico , Pessoa de Meia-Idade , Diagnóstico Diferencial , Adulto Jovem , Autoanticorpos/sangue , Doença de Hashimoto/sangue , Doença de Hashimoto/diagnóstico , Metabolômica , Proteínas do Tecido Nervoso/sangue , Adolescente , Proteínas de Membrana/sangue , Espectroscopia de Ressonância Magnética , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Biomarcadores/sangue , Receptores de N-Metil-D-Aspartato/imunologia , Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Doenças Autoimunes do Sistema Nervoso/imunologiaRESUMO
The impaired function of the serotonin transporter (SERT) in humans has been linked to a higher risk of obesity and type 2 diabetes, especially as people age. Consuming a "Western diet" (WD), which is high in saturated fats, cholesterol, and sugars, can induce metabolic syndrome. Previous research indicated that mice carrying a targeted inactivation of the Sert gene (knockout, KO) and fed a WD display significant metabolic disturbances and behaviors reminiscent of ADHD. These abnormalities might be mediated via a dysfunction in insulin receptor (IR) signaling, which is also associated with adult ADHD. However, the impact of Sert deficiency on IR signaling and systemic metabolic changes has not been thoroughly explored. In this study, we conducted a detailed analysis of locomotor behavior in wild-type (WT) and KO mice fed a WD or control diet. We investigated changes in the blood metabolome and examined, via PCR, the expression of insulin receptor A and B isoforms and key regulators of their function in the brain. Twelve-month-old KO mice and their WT littermates were fed a WD for three weeks. Nuclear magnetic resonance spectroscopy analysis of plasma samples showed that KO mice on a WD had higher levels of lipids and lipoproteins and lower levels of glucose, lactate, alanine, valine, and isoleucine compared to other groups. SERT-KO mice on the control diet exhibited increased brain levels of both IR A and B isoforms, accompanied by a modest increase in the negative regulator ENPP. The KO mice also displayed anxiety-like behavior and reduced exploratory activity in an open field test. However, when the KO animals were fed a WD, the aberrant expression levels of IR isoforms in the KO mice and locomotor behavior were ameliorated indicating a complex interaction between genetic and dietary factors that might contribute to ADHD-like symptoms. Overall, our findings suggest that the lack of Sert leads to a unique metabolic phenotype in aged mice, characterized by dysregulated IR-related pathways. These changes are exacerbated by WD in the blood metabolome and are associated with behavioral abnormalities.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Encéfalo , Dieta Ocidental , Metaboloma , Camundongos Knockout , Receptor de Insulina , Proteínas da Membrana Plasmática de Transporte de Serotonina , Animais , Masculino , Camundongos , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/sangue , Transtorno do Deficit de Atenção com Hiperatividade/genética , Comportamento Animal , Encéfalo/metabolismo , Dieta Ocidental/efeitos adversos , Camundongos Endogâmicos C57BL , Receptor de Insulina/metabolismo , Receptor de Insulina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismoRESUMO
The global population is increasingly reliant on vaccines to maintain population health with billions of doses used annually in immunisation programmes. Substandard and falsified vaccines are becoming more prevalent, caused by both the degradation of authentic vaccines but also deliberately falsified vaccine products. These threaten public health, and the increase in vaccine falsification is now a major concern. There is currently no coordinated global infrastructure or screening methods to monitor vaccine supply chains. In this study, we developed and validated a matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS) workflow that used open-source machine learning and statistical analysis to distinguish authentic and falsified vaccines. We validated the method on two different MALDI-MS instruments used worldwide for clinical applications. Our results show that multivariate data modelling and diagnostic mass spectra can be used to distinguish authentic and falsified vaccines providing proof-of-concept that MALDI-MS can be used as a screening tool to monitor vaccine supply chains.