Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chem Rev ; 123(4): 1552-1634, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36745738

RESUMO

Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) have opened a variety of exciting research fields. However, although a vast number of applications have been proposed since the two techniques were first reported, none has been applied to real practical use. This calls for an update in the recent fundamental and application studies of SERS and TERS. Thus, the goals and scope of this review are to report new directions and perspectives of SERS and TERS, mainly from the viewpoint of combining their mechanism and application studies. Regarding the recent progress in SERS and TERS, this review discusses four main topics: (1) nanometer to subnanometer plasmonic hotspots for SERS; (2) Ångström resolved TERS; (3) chemical mechanisms, i.e., charge-transfer mechanism of SERS and semiconductor-enhanced Raman scattering; and (4) the creation of a strong bridge between the mechanism studies and applications.

2.
Analyst ; 149(12): 3276-3287, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38770583

RESUMO

The droplet deposition methods in Raman spectroscopy have received considerable attention in the field of analytical sensing focusing on effective pre-concentration of the studied analyte (coffee-ring effect or small spots). This review covers different analytical applications of drop-coating deposition Raman scattering (DCDRS) and droplet deposition surface-enhanced Raman scattering (SERS) spectroscopy. Two main advantages of droplet deposition Raman techniques are considered: the drying-induced segregation of the components from the mixtures (such as body fluids) and the sensitivity of detection of various analytically important molecules. Some recent advanced applications, including clinical cancer diagnosis, are discussed and summarized. Finally, the potential and further perspectives of the droplet deposition Raman methods for analytical studies are introduced.

3.
Angew Chem Int Ed Engl ; 59(14): 5454-5462, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31588641

RESUMO

Experimental results obtained in different laboratories world-wide by researchers using surface-enhanced Raman scattering (SERS) can differ significantly. We, an international team of scientists with long-standing expertise in SERS, address this issue from our perspective by presenting considerations on reliable and quantitative SERS. The central idea of this joint effort is to highlight key parameters and pitfalls that are often encountered in the literature. To that end, we provide here a series of recommendations on: a) the characterization of solid and colloidal SERS substrates by correlative electron and optical microscopy and spectroscopy, b) on the determination of the SERS enhancement factor (EF), including suitable Raman reporter/probe molecules, and finally on c) good analytical practice. We hope that both newcomers and specialists will benefit from these recommendations to increase the inter-laboratory comparability of experimental SERS results and further establish SERS as an analytical tool.

4.
Phys Chem Chem Phys ; 19(1): 388-393, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27905608

RESUMO

Evaporation of a drop of biomolecular solution on a solid surface typically creates a ring-shaped drying pattern, formed by the so-called "coffee ring" effect. The size and shape of the "coffee ring" pattern is strongly dependent on the properties of the surface as well as on the deposited molecular solution or suspension. In this paper, we tested six types of surfaces differing in their physico-chemical surface characteristics (contact angles, wettability and roughness) as well as in the presence or absence of a base metal layer. The tested surfaces include two fluorocarbon coated metallic surfaces (commercial SpectRIM™ from Tienta Sciences, Inc. based on a smoothed stainless steel and non-commercial aluminium surface), three silanized glass surfaces and polished CaF2. The results showed that the formation of a "coffee ring" was influenced by surface wettability as well as by lipid concentration in the drop. Drop coating deposition Raman (DCDR) spectroscopy was used to compare the ability of the tested surfaces to preconcentrate molecules in the ring and therefore improve detection sensitivity. It was shown that surfaces with a contact angle of 90° and higher produce smaller drying patterns than more hydrophilic surfaces. In these drying patterns, the model liposomes were more efficiently preconcentrated, which resulted in a higher Raman signal of the liposomes. The applicability of surfaces with static contact angles less than 90°, high water contact angle hysteresis and no metal layer (silanized glass, CaF2) is limited to samples with high liposome concentrations.

5.
Phys Chem Chem Phys ; 18(29): 19613-20, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27381363

RESUMO

Gold nanoplasmonic substrates with high sensitivity and spectral reproducibility are key components of molecular sensors based on surface-enhanced Raman scattering (SERS). In this work, we used a confocal Raman microscope and several types of gold nanostructures (arrays of nanodiscs, nanocones and nanodisc dimers) prepared by hole-mask colloidal lithography (HCL) to determine the sources of variability in SERS measurements. We demonstrate that significant variations in the SERS signal can originate from the method of deposition of analyte molecules onto a SERS substrate. While the method based on incubation of SERS substrates in a solution containing the analyte yields a SERS signal with low variability, the droplet deposition method produces a SERS signal with rather high variability. Variability of the SERS signal of a single nanoparticle was determined from the statistical analysis of the SERS signal in short-range Raman maps recorded using different sized laser spots produced by means of different objectives. We show that the number of nanoparticles located within the laser spot can be a source of substantial SERS signal variability, especially for high-magnification objectives. We demonstrate that SERS substrates prepared by HCL exhibit high SERS enhancement and excellent homogeneity (about 20% relative standard deviation from short-range maps). The nanocone arrays are shown to provide the highest SERS enhancement, the lowest relative level of fluorescence background, and also slightly better homogeneity when compared with arrays of nanodisc dimers or single nanodiscs.

6.
Anal Chem ; 87(5): 2840-4, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25664564

RESUMO

Considering both the potential effects on human health and the need for knowledge of food composition, quantitative detection of synthetic dyes in foodstuffs and beverages is an important issue. For the first time, we report a fast quantitative analysis of the food and drink colorant azorubine (E 122) in different types of beverages using surface-enhanced Raman scattering (SERS) without any sample preparation. Seven commercially available sweet drinks (including two negative controls) with high levels of complexity (sugar/artificial sweetener, ethanol content, etc.) were tested. Highly uniform Au "film over nanospheres" (FON) substrates together with use of Raman signal from silicon support as internal intensity standard enabled us to quantitatively determine the concentration of azorubine in each drink. SERS spectral analysis provided sufficient sensitivity (0.5-500 mg L(-1)) and determined azorubine concentration closely correlated with those obtained by a standard HPLC technique. The analysis was direct without the need for any pretreatment of the drinks or Au surface. Our SERS approach is a simple and rapid (35 min) prescan method, which can be easily implemented for a field application and for preliminary testing of food samples.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120109, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34214739

RESUMO

Raman spectroscopy is a useful technique to identify small organic molecules, including contaminants. The drop coating deposition Raman (DCDR) is more sensitive than conventional Raman spectroscopy from solution. It is based on Raman measurement from a small drop dried on a hydrophobic surface where studied molecules are preconcentrated. In this paper, DCDR spectra of dried drops of selected contaminants (food contaminant melamine, fungicide thiram, herbicides bentazon and picloram) on the hydrophobic substrate were acquired for the first time, whereas Raman spectra from stock solutions were impossible to obtain under the same experimental conditions. The lowest DCDR detected concentrations were determined as 6.4 µM, 0.31 µM, 20 µM and 2 µM in deposited concentrations for melamine, thiram, bentazon and picloram, respectively. Therefore, DCDR spectroscopy can serve to detect these molecules in concentrations relevant in food/groundwater contaminations.


Assuntos
Análise Espectral Raman , Interações Hidrofóbicas e Hidrofílicas
8.
Nanomaterials (Basel) ; 10(4)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316367

RESUMO

Surface-enhanced fluorescence (SEF) requires the absorption/emission band of the fluorophore, the localized surface plasmon resonance (LSPR) of the nanostructure and the excitation wavelength to fall in the same (or very close) spectral range. In this paper, we monitor the SEF intensity and lifetime dependence of riboflavin (vitamin B2) adsorbed on a spacer-modified Ag substrate with respect to the thickness of the spacer. The substrates were formed by silver nanoislands deposited onto magnetron-sputtered polytetrafluoroethylene (ms-PTFE). The spacer was formed by the ms-PTFE layer with the thickness ranging from ~5 to 25 nm. The riboflavin dissolved in dimethylsulfoxide (DMSO) at a 10 µM concentration forms, at the ms-PTFE surface, a homogeneous layer of adsorbed molecules corresponding to a monomolecular layer. The microspectroscopic measurements of the adsorbed layer were performed through a sessile droplet; our study has shown the advantages and limitations of this approach. Time-resolved fluorescence enabled us to determine the enhanced fluorescence quantum yield due to the shortening of the radiative decay in the vicinity of the plasmonic surface. For the 5 nm ms-PTFE layer possessing the largest (estimated 4×) fluorescence enhancement, the quantum yield was increased 2.3×.

9.
Nanomaterials (Basel) ; 9(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600895

RESUMO

Surface-enhanced Raman scattering (SERS) sensors are constructed from metallic plasmonic nanostructures providing high sensitivity and spectral reproducibility. In many cases, irradiation of the SERS substrate by the laser beam leads to an increase of the local temperature and consequently to thermal degradation of metallic nanostructure itself and/or adsorbed analyte. We report here a "bottom-up" technique to fabricate new thermally resistant gold "film over nanosphere" (FON) substrates for SERS. We elaborated the simple and straightforward method of preparation of homogeneously and closely packed monolayer of SiO2 nanoparticles (50 nm in diameter) and covered it by a thin (20 nm) layer of magnetron-sputtered gold. The spectral testing using biologically important molecules (methylene blue, cationic porphyrin, and fungicide 1-methyl-1H-benzimidazole-2-thiol) proved a sensitivity and reproducibility of our AuSiO2 substrates. The main advantage of such SERS-active substrates is high thermal stability and low intensity of background and signal of graphitic carbon.

10.
Nanomaterials (Basel) ; 8(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29890758

RESUMO

A sometimes overlooked degree of freedom in the design of many spectroscopic (mainly Raman) experiments involve the choice of experimental geometry and polarization arrangement used. Although these aspects usually play a rather minor role, their neglect may result in a misinterpretation of the experimental results. It is well known that polarization- and/or angular- resolved spectroscopic experiments allow one to classify the symmetry of the vibrations involved or the molecular orientation with respect to a smooth surface. However, very low detection limits in surface-enhancing spectroscopic techniques are often accompanied by a complete or partial loss of this detailed information. In this review, we will try to elucidate the extent to which this approach can be generalized for molecules adsorbed on plasmonic nanostructures. We will provide a detailed summary of the state-of-the-art experimental findings for a range of plasmonic platforms used in the last ~ 15 years. Possible implications on the design of plasmon-based molecular sensors for maximum signal enhancement will also be discussed.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 197: 202-207, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29398590

RESUMO

Optimization of surface-enhanced Raman scattering (SERS)-based sensors for (bio)analytical applications has received much attention in recent years. For optimum sensitivity, both the nanostructure fabrication process and the choice of the excitation wavelength used with respect to the specific analyte studied are of crucial importance. In this contribution, detailed SERS intensity profiles were measured using gradient nanostructures with the localized surface-plasmon resonance (LSPR) condition varying across the sample length and using riboflavin as the model biomolecule. Three different excitation wavelengths (633 nm, 515 nm and 488 nm) corresponding to non-resonance, pre-resonance and resonance excitation with respect to the studied molecule, respectively, were tested. Results were interpreted in terms of a superposition of the enhancement provided by the electromagnetic mechanism and intrinsic properties of the SERS probe molecule. The first effect was dictated mainly by the degree of spectral overlap between the LSPR band, the excitation wavelength along with the scattering cross-section of the nanostructures, while the latter was influenced by the position of the molecular resonance with respect to the excitation wavelength. Our experimental findings contribute to a better understanding of the SERS enhancement mechanism.

12.
Sci Rep ; 7(1): 4293, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28655920

RESUMO

Silver nanorod arrays prepared by oblique angle deposition (AgOADs) represent versatile, simple and inexpensive substrates for high sensitivity surface enhanced Raman scattering (SERS) applications. Their anisotropic nature suggests that their optical responses such as the SERS signal, the depolarization ratio, reflectivity and ellipsometric parameters critically depend on the states of polarization, nanorod angular arrangement and specific illumination-observation geometry. SERS polarization and angular dependences of AgOADs were measured using methylene blue (MB) molecule. Our study constitutes, to our knowledge, the most detailed investigation of such characteristics of plasmonic nanostructures to date. This is due to the 90°-scattering geometry used in which two out of three Euler angles determining the nanorod spatial orientation and four polarization combinations can be varied simultaneously. We attributed the anisotropic optical response to anisotropic (pseudo)refractive index caused by different periodicity of our structures in different directions since the plasmonic properties were found rather isotropic. For the first time we demonstrate very good correspondence between SERS intensities and ellipsometric parameters for all measured configurations as compared on the basis of the surface selection rules. Obtained results enable quantitative analysis of MB Raman tensor elements, indicating that the molecules adsorb predominantly with the symmetry axis perpendicular to the surface.

13.
Appl Spectrosc ; 69(8): 939-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26163374

RESUMO

Drop-coating deposition Raman (DCDR) spectroscopy is based on the measurement of a sample that has been preconcentrated by being dried on a special hydrophobic plate. In addition to its higher sensitivity, the advantage of DCDR over the conventional Raman spectroscopy is the small sample volume needed, the lack of interference from solvents, and the capability of segregating any impurities present and separating components in more complex samples. In this study, DCDR spectroscopy was employed to investigate the complex of the cationic copper(II) 5,10,15,20-tetrakis(1-methyl-4-pyridyl) porphyrin (CuTMPyP) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes. Drop-coating deposition Raman spectra were treated using factor analysis (FA), which led to the following conclusions: (i) the distribution of CuTMPyP in the complex is not homogenous, (ii) the DCDR technique segregates complexed and noncomplexed parts of the sample, (iii) the spectral changes caused by the drying process and by the interaction of CuTMPyP with the DPPC liposomes can be distinguished, and (iv) the porphyrin molecules interacting with DPPC affect both the order-disorder properties of the lipid chains and the lipid head.


Assuntos
Lipossomos/química , Lipossomos/metabolismo , Membranas Artificiais , Porfirinas/química , Porfirinas/metabolismo , Análise Espectral Raman/métodos
14.
Chem Phys Lipids ; 132(2): 145-56, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15555601

RESUMO

Raman scattering spectra of 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DPPG) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) dispersions, mixed with water-soluble porphyrins, i.e. cationic copper(II)-5,10,15,12-tetrakis(4-N-methylpyridyl) and anionic silver(II)-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrins, were measured in the 2800-3100 cm(-1) C-H stretching vibration region as a function of the temperature within the 5-55 degrees C range. Temperature profiles of Raman data were constructed from a quantitative data treatment based on factor analysis. This method is shown to be more efficient than the commonly used approach employing peak intensity ratios. Parameters of the gel phase to liquid crystal phase transition determined from Raman temperature profiles were used to monitor the porphyrin influence on DPPG and DPPC structures. Both negatively and positively charged porphyrins significantly perturb DPPC and DPPG dispersions, causing significant downshift of the transition temperature and broadening of the transition region. Water-soluble porphyrins are assumed to set at the outside part of phospholipid dispersions and interact via coulombic forces with charged lipid heads. For the cationic CuTMPyP, the strongest effect has been observed for negatively charged DPPG. In contrast, anionic AgTPPC4 has been found to interact more efficiently with DPPC possessing both positive and negative charges.


Assuntos
Compostos Organometálicos/química , Fosfolipídeos/química , Porfirinas/química , Análise Espectral Raman/métodos , Temperatura , 1,2-Dipalmitoilfosfatidilcolina/química , Cobre/química , Estrutura Molecular , Fosfatidilgliceróis/química , Prata/química , Solubilidade , Água/química
15.
Chem Phys Lipids ; 172-173: 1-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23598168

RESUMO

Drop coating deposition Raman (DCDR) spectroscopy was used to study liposomes (DPPC and asolectin) with growing proportion of cholesterol. Deposited samples of both liposomes on special hydrophobic surface formed a dried drop with a circular shape with a ring of concentrated liposomes at the outer edge. The presence of cholesterol in liposome causes a diminishing of the drop size and an increasing in diameter of the ring, but DPPC with 20% of cholesterol forms the compact drop without the ring. Raman spectra contain characteristics of both lipids and cholesterol, liposomes do not change their initial phase state after drying. Spectral mapping shows that maximum Raman intensity originated from the inner part of the ring. Our results suggest that DCDR spectroscopy can be used for studying lipids containing cholesterol in situ.


Assuntos
Colesterol/química , Lipossomos/química , Análise Espectral Raman , 1,2-Dipalmitoilfosfatidilcolina/química , Interações Hidrofóbicas e Hidrofílicas , Fosfatidilcolinas/química
16.
J Colloid Interface Sci ; 354(2): 611-9, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21147484

RESUMO

We report tuning of structure dependent optical properties of colloidal systems of borate-stabilized silver nanoparticles (Ag NPs) and polythiophene-based cationic polyelectrolyte with ionic-liquid like side groups: poly{3-[6-(1-methylimidazolium-3-yl)hexyl]thiophene-2,5-diyl bromide} (PMHT-Br) towards obtaining local electromagnetic field enhancement effects. Surface-enhanced Raman scattering (SERS) studies showed that the strong electromagnetic field enhancement is related to the formation of aggregates of Ag NPs achieved at the components ratio providing the charge balance between Ag NPs and cationic polythiophene, at which Ag NPs are nearly single-polymer-layer coated, their zeta potential is close to zero and they easily form aggregates in which the mean inter-particle distance enables the occurrence of desired plasmonic effects. Fluorescence quenching is efficient only in the systems with low concentrations of PMHT-Br, in which almost all polymer chains directly interact with the Ag NPs surface.

17.
Phys Chem Chem Phys ; 11(26): 5455-61, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19551215

RESUMO

The influence of the poly(N-ethyl-2-ethynylpyridinium iodide) (PEEP-I) concentration on the morphology and optical properties of nanocomposite systems prepared by mixing the polymer solution with a hydrosol of ca. 9 nm Ag nanoparticles (NPs) was investigated by a combination of surface plasmon extinction (SPE) measurements, transmission electron microscope (TEM) imaging and surface-enhanced Raman spectroscopy (SERS). The PEEP-I concentration was found to have a strong impact on the assembly of Ag NPs and, consequently, on the optical responses of the composite systems. At low polymer concentrations in the composite (corresponding to ca. 50-1800 monomer units/NP), the formation of fractal aggregates was observed. In particular, the average fractal dimension D = 1.9 +/- 0.1 was determined for aggregates in the system with 5 x 10(-6) M polymer concentration. By contrast, in systems with polymer concentrations higher than about 1 x 10(-5) M, relatively small aggregates of Ag NPs with large interparticle distances were formed. The differences in the morphology of the composite systems with various polymer concentrations manifested themselves clearly in their SPE spectra. Furthermore, upon optical excitation with appropriate wavelengths (488.0 and 514.5 nm), the fractal aggregates acted as carriers of "hot spots", i.e. strong, localized, nanoscale optical fields, from which intense and well resolved SERS spectra of the polymer were obtained.


Assuntos
Etano/química , Nanopartículas/química , Polímeros/química , Compostos de Piridínio/química , Prata/química , Fenômenos Ópticos , Análise Espectral Raman
18.
Biopolymers ; 82(4): 390-3, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16453306

RESUMO

Surface-enhanced resonance Raman scattering (SERRS) spectra of cationic 5,10,15,20-tetrakis(1-methyl-4-pyridyl) porphyrin (TMPyP) and anionic 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (TSPP) were measured from gold surfaces prepared by attaching citrate-reduced colloidal nanoparticles to glass slides silanized by 3-aminopropyltrimethoxysilane. SERRS spectra of both porphyrins obtained in a large concentration range (1 x 10(-4) to 1 x 10(-7)M) of primary solution do not show any sign of porphyrin metalation or perturbation of its native structure. Optimal adsorption time (15-20 min) and covering concentration limit (lower than 1 x 10(-5)M) of porphyrins have been estimated from the concentration and soaking time dependences of SERRS spectra.


Assuntos
Ouro/química , Nanoestruturas/química , Porfirinas/química , Análise Espectral Raman/métodos , Coloides/química , Vidro/química , Estrutura Molecular , Nanotecnologia/métodos , Propriedades de Superfície , Vibração
19.
Langmuir ; 21(7): 2956-62, 2005 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-15779971

RESUMO

The influence of sodium thiosulfate (THS) concentration in Ag colloid/THS/H(2)TMPyP and Ag colloid/H2TMPyP/THS systems (H2TMPyP = 5,10,15,20-tetrakis(1-methyl-4-pyridyl)porphyrin) was investigated by a combination of surface-enhanced resonance Raman scattering (SERRS) spectroscopy, surface plasmon extinction (SPE) measurements, and transmission electron microscopy (TEM). THS was found to have a strong impact on Ag nanoparticle surface structure and aggregation state and on interaction with H2TMPyP probe molecules, as evidenced by variations of the SERRS spectrum. In the Ag colloid/THS/H2TMPyP system, when laser-ablated Ag colloid was THS pretreated prior to the porphyrin addition, a critical threshold THS concentration (4 x 10(-5) M) was discovered. At concentrations below the threshold, THS mainly reduces the number of Ag+ adsorption sites. This leads to increased Ag nanoparticle aggregation prior to the porphyrin addition and significant weakening of the overall SERRS signal. Dominant contributions in the SERRS spectrum correspond to free base H2TMPyP and Ag+ containing the AgTMPyP form. At concentrations above the threshold, THS mediates also the formation and stabilization of new adsorption sites, probably Ag(0) sites. This induces a turn in the aggregation state of the pretreated Ag-c/THS system, an increase of the overall SERRS signal, and the appearance of a new spectral form of Ag metalated porphyrin.


Assuntos
Nanoestruturas/química , Porfirinas/química , Prata/química , Tiossulfatos/química , Ânions/química , Coloides/química , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA